{"title":"基于非稳态能量守恒的三维离心叶轮动态传递矩阵的实验和数值评估","authors":"Izuru Kambayashi, Chengye Dou, Donghyuk Kang","doi":"10.1115/1.4064996","DOIUrl":null,"url":null,"abstract":"\n Under unsteady operating conditions in turbomachinery, the performance is unable to respond rapidly enough to follow characteristic curves for the steady condition. To design a reliable turbomachinery under unexpected unsteady conditions, we evaluated the dynamic transfer matrix of a three-dimensional centrifugal impeller. The working fluid is incompressible air. To make the current results more applicable in a broader sense such as pumps, all parameters and results were normalized. The experimental results showed a more significant negative slope in the unsteady performance curve compared to that in the steady performance curve. This was mainly caused by the phase delay of the pressure rise to the pulsating flow rate. We clarified the changes in gain and phase delay under unsteady conditions by conducting numerical simulations. The numerical results showed that the unsteady pressure rise was primarily generated by inertia and power terms in the unsteady energy conservation equation. The power term was predominantly influenced by the angular momentum flow rate difference and the change rate of angular momentum. Each term was quantitatively evaluated, and its contribution to the unsteady pressure rise was discussed. Within the range of frequencies tested in this study, the transfer matrix for the three-dimensional centrifugal impeller could be effectively approximated through a first-order lag approximation considering a series-connected derivative system. We believe that our findings can be extended to centrifugal pumps when disregarding the compressibility effects such as cavitation.","PeriodicalId":504378,"journal":{"name":"Journal of Fluids Engineering","volume":"211 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and Numerical Evaluations of Dynamic Transfer Matrix for a Three-Dimensional Centrifugal Impeller Based On Unsteady Energy Conservation\",\"authors\":\"Izuru Kambayashi, Chengye Dou, Donghyuk Kang\",\"doi\":\"10.1115/1.4064996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Under unsteady operating conditions in turbomachinery, the performance is unable to respond rapidly enough to follow characteristic curves for the steady condition. To design a reliable turbomachinery under unexpected unsteady conditions, we evaluated the dynamic transfer matrix of a three-dimensional centrifugal impeller. The working fluid is incompressible air. To make the current results more applicable in a broader sense such as pumps, all parameters and results were normalized. The experimental results showed a more significant negative slope in the unsteady performance curve compared to that in the steady performance curve. This was mainly caused by the phase delay of the pressure rise to the pulsating flow rate. We clarified the changes in gain and phase delay under unsteady conditions by conducting numerical simulations. The numerical results showed that the unsteady pressure rise was primarily generated by inertia and power terms in the unsteady energy conservation equation. The power term was predominantly influenced by the angular momentum flow rate difference and the change rate of angular momentum. Each term was quantitatively evaluated, and its contribution to the unsteady pressure rise was discussed. Within the range of frequencies tested in this study, the transfer matrix for the three-dimensional centrifugal impeller could be effectively approximated through a first-order lag approximation considering a series-connected derivative system. We believe that our findings can be extended to centrifugal pumps when disregarding the compressibility effects such as cavitation.\",\"PeriodicalId\":504378,\"journal\":{\"name\":\"Journal of Fluids Engineering\",\"volume\":\"211 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluids Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4064996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4064996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental and Numerical Evaluations of Dynamic Transfer Matrix for a Three-Dimensional Centrifugal Impeller Based On Unsteady Energy Conservation
Under unsteady operating conditions in turbomachinery, the performance is unable to respond rapidly enough to follow characteristic curves for the steady condition. To design a reliable turbomachinery under unexpected unsteady conditions, we evaluated the dynamic transfer matrix of a three-dimensional centrifugal impeller. The working fluid is incompressible air. To make the current results more applicable in a broader sense such as pumps, all parameters and results were normalized. The experimental results showed a more significant negative slope in the unsteady performance curve compared to that in the steady performance curve. This was mainly caused by the phase delay of the pressure rise to the pulsating flow rate. We clarified the changes in gain and phase delay under unsteady conditions by conducting numerical simulations. The numerical results showed that the unsteady pressure rise was primarily generated by inertia and power terms in the unsteady energy conservation equation. The power term was predominantly influenced by the angular momentum flow rate difference and the change rate of angular momentum. Each term was quantitatively evaluated, and its contribution to the unsteady pressure rise was discussed. Within the range of frequencies tested in this study, the transfer matrix for the three-dimensional centrifugal impeller could be effectively approximated through a first-order lag approximation considering a series-connected derivative system. We believe that our findings can be extended to centrifugal pumps when disregarding the compressibility effects such as cavitation.