B. Babalola, Rudzani Nengwekhulu, O. Ayodele, Boitumelo Charmaine Mashabela, P. Olubambi
{"title":"烧结镍基超级合金的相位预测、微观结构和显微硬度","authors":"B. Babalola, Rudzani Nengwekhulu, O. Ayodele, Boitumelo Charmaine Mashabela, P. Olubambi","doi":"10.4028/p-es8wsb","DOIUrl":null,"url":null,"abstract":"In this study, the phase formation, microstructure and microhardness of nickel-based superalloy fabricated using a spark plasma sintering technique were evaluated. The microstructure and microhardness of the nickel-based superalloy were explored at diverse sintering temperatures (600 °C - 1050 °C). The phase formations and volume fraction with respect to temperature were predicted by using CALPHAD-based software. The microstructure, phase constitution, and microhardness were evaluated via scanning electron microscope (SEM), X-ray diffraction (XRD), and Vickers hardness tester. The findings indicated that the spark plasma sintering technique enables the development and growth of the necking of particles, enhancing elemental bonding and alloy densification as the temperature increases. The hardness value increases at increasing temperatures, with a maximum value of 353 HV attained at a temperature of 1050 °C.","PeriodicalId":18262,"journal":{"name":"Materials Science Forum","volume":"19 s1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase Prediction, Microstructure, and Microhardness of Sintered Nickel-Based Superalloy\",\"authors\":\"B. Babalola, Rudzani Nengwekhulu, O. Ayodele, Boitumelo Charmaine Mashabela, P. Olubambi\",\"doi\":\"10.4028/p-es8wsb\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the phase formation, microstructure and microhardness of nickel-based superalloy fabricated using a spark plasma sintering technique were evaluated. The microstructure and microhardness of the nickel-based superalloy were explored at diverse sintering temperatures (600 °C - 1050 °C). The phase formations and volume fraction with respect to temperature were predicted by using CALPHAD-based software. The microstructure, phase constitution, and microhardness were evaluated via scanning electron microscope (SEM), X-ray diffraction (XRD), and Vickers hardness tester. The findings indicated that the spark plasma sintering technique enables the development and growth of the necking of particles, enhancing elemental bonding and alloy densification as the temperature increases. The hardness value increases at increasing temperatures, with a maximum value of 353 HV attained at a temperature of 1050 °C.\",\"PeriodicalId\":18262,\"journal\":{\"name\":\"Materials Science Forum\",\"volume\":\"19 s1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-es8wsb\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-es8wsb","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本研究评估了采用火花等离子烧结技术制造的镍基超级合金的相形成、微观结构和显微硬度。在不同的烧结温度(600 °C - 1050 °C)下,对镍基超合金的微观结构和显微硬度进行了研究。使用基于 CALPHAD 的软件预测了相的形成和随温度变化的体积分数。通过扫描电子显微镜 (SEM)、X 射线衍射 (XRD) 和维氏硬度计对微观结构、相组成和显微硬度进行了评估。研究结果表明,随着温度的升高,火花等离子烧结技术能使颗粒颈部发展壮大,增强元素结合和合金致密化。硬度值随温度升高而增加,在温度为 1050 °C 时达到最大值 353 HV。
Phase Prediction, Microstructure, and Microhardness of Sintered Nickel-Based Superalloy
In this study, the phase formation, microstructure and microhardness of nickel-based superalloy fabricated using a spark plasma sintering technique were evaluated. The microstructure and microhardness of the nickel-based superalloy were explored at diverse sintering temperatures (600 °C - 1050 °C). The phase formations and volume fraction with respect to temperature were predicted by using CALPHAD-based software. The microstructure, phase constitution, and microhardness were evaluated via scanning electron microscope (SEM), X-ray diffraction (XRD), and Vickers hardness tester. The findings indicated that the spark plasma sintering technique enables the development and growth of the necking of particles, enhancing elemental bonding and alloy densification as the temperature increases. The hardness value increases at increasing temperatures, with a maximum value of 353 HV attained at a temperature of 1050 °C.