基于可变比例不连续径向函数的无网格法解决材料不连续问题

Artur Krowiak, J. Podgórski
{"title":"基于可变比例不连续径向函数的无网格法解决材料不连续问题","authors":"Artur Krowiak, J. Podgórski","doi":"10.15632/jtam-pl/185323","DOIUrl":null,"url":null,"abstract":"The paper presents a meshless method based on global interpolation with radial base functions and shows its application in solving interface problems. Such problems arise when two or more different materials are used to construct the element under consideration. Across the interface between the materials, a discontinuity of material parameters arises. To solve the problem, the radial basis function-based collocation method is applied. To properly reflect the discontinuity, the base functions are modified. In this paper, the method is applied to solve problems described by elliptic equations. Using these examples, the accuracy, stability and convergence of the method are examined.","PeriodicalId":503677,"journal":{"name":"Journal of Theoretical and Applied Mechanics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Material discontinuity problems solved by a meshless method based on variably scaled discontinuous radial functions\",\"authors\":\"Artur Krowiak, J. Podgórski\",\"doi\":\"10.15632/jtam-pl/185323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a meshless method based on global interpolation with radial base functions and shows its application in solving interface problems. Such problems arise when two or more different materials are used to construct the element under consideration. Across the interface between the materials, a discontinuity of material parameters arises. To solve the problem, the radial basis function-based collocation method is applied. To properly reflect the discontinuity, the base functions are modified. In this paper, the method is applied to solve problems described by elliptic equations. Using these examples, the accuracy, stability and convergence of the method are examined.\",\"PeriodicalId\":503677,\"journal\":{\"name\":\"Journal of Theoretical and Applied Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Theoretical and Applied Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15632/jtam-pl/185323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical and Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15632/jtam-pl/185323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种基于全局插值与径向基函数的无网格方法,并展示了该方法在解决界面问题中的应用。当使用两种或两种以上不同的材料来构建所考虑的元素时,就会出现此类问题。在材料之间的界面上,会出现材料参数的不连续性。为了解决这个问题,我们采用了基于径向基函数的配位方法。为了正确反映不连续性,需要对基函数进行修改。本文将该方法应用于解决椭圆方程描述的问题。通过这些例子,研究了该方法的准确性、稳定性和收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Material discontinuity problems solved by a meshless method based on variably scaled discontinuous radial functions
The paper presents a meshless method based on global interpolation with radial base functions and shows its application in solving interface problems. Such problems arise when two or more different materials are used to construct the element under consideration. Across the interface between the materials, a discontinuity of material parameters arises. To solve the problem, the radial basis function-based collocation method is applied. To properly reflect the discontinuity, the base functions are modified. In this paper, the method is applied to solve problems described by elliptic equations. Using these examples, the accuracy, stability and convergence of the method are examined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信