从山楂果(山楂属植物)中回收生物活性成分的加热、超声波和微波辅助提取方法

Q3 Agricultural and Biological Sciences
Areej Alsobh, M. Zin, Ana Marđokić, G. Vatai, Szilvia Bánvölgyi
{"title":"从山楂果(山楂属植物)中回收生物活性成分的加热、超声波和微波辅助提取方法","authors":"Areej Alsobh, M. Zin, Ana Marđokić, G. Vatai, Szilvia Bánvölgyi","doi":"10.1556/446.2024.00103","DOIUrl":null,"url":null,"abstract":"In this work, an assessment of effective solvents and extraction methods was carried out to recover the bioactive compounds from hawthorn fruit (Crataegus monogyna Jacq.). Extractions assisted by heat, microwave, and ultrasound were carried out using various organic solvents (methanol, ethanol, and isopropanol). pH differential, Folin–Ciocalteu's, and aluminum chloride methods were used to determine total monomeric anthocyanin (TMA), total phenolic compound (TPC), and total flavonoid content (TFC), consecutively. Ferric Reducing Antioxidant Power (FRAP), 2,2-Diphenyl-1-picrylhydrazyl Hydrate (DPPH), and 2,2′- azino- bis (3-ethylbenzothiazoline-6- sulfonic acid) (ABTS) assays were used to measure the antioxidant activity (AA) of the extracts. The outputs revealed that extraction methods and solvents significantly affect anthocyanin concentration, TPC, TFC, AA, and color values of hawthorn fruit extracts. Due to the highest recovered TMA (0.152 ± 0.002 mg ECy3Gl/g of dry weight), TPC (49.14 ± 0.38 mg gallic acid equivalents/g of dry weight), and TFC (18.38 ± 0.19 mg quercetin equivalents/g of dry weight) contents, the ultrasonic-assisted extraction is superior to heat and microwave-assisted extractions. Accordingly, it was also observed that the methanol solvent is more profound than ethanol and isopropanol. Further, the bioactive compounds' content and the extracts' antioxidant activity are shown to be highly correlated. Thus, hawthorn extracts are considered to have antioxidant properties because of their concentrated bioactive compounds.","PeriodicalId":20837,"journal":{"name":"Progress in Agricultural Engineering Sciences","volume":"37 17","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heat, ultrasound, and microwave assisted extraction methods for recovering bioactive components from hawthorn fruit (Crataegus monogyna Jacq.)\",\"authors\":\"Areej Alsobh, M. Zin, Ana Marđokić, G. Vatai, Szilvia Bánvölgyi\",\"doi\":\"10.1556/446.2024.00103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, an assessment of effective solvents and extraction methods was carried out to recover the bioactive compounds from hawthorn fruit (Crataegus monogyna Jacq.). Extractions assisted by heat, microwave, and ultrasound were carried out using various organic solvents (methanol, ethanol, and isopropanol). pH differential, Folin–Ciocalteu's, and aluminum chloride methods were used to determine total monomeric anthocyanin (TMA), total phenolic compound (TPC), and total flavonoid content (TFC), consecutively. Ferric Reducing Antioxidant Power (FRAP), 2,2-Diphenyl-1-picrylhydrazyl Hydrate (DPPH), and 2,2′- azino- bis (3-ethylbenzothiazoline-6- sulfonic acid) (ABTS) assays were used to measure the antioxidant activity (AA) of the extracts. The outputs revealed that extraction methods and solvents significantly affect anthocyanin concentration, TPC, TFC, AA, and color values of hawthorn fruit extracts. Due to the highest recovered TMA (0.152 ± 0.002 mg ECy3Gl/g of dry weight), TPC (49.14 ± 0.38 mg gallic acid equivalents/g of dry weight), and TFC (18.38 ± 0.19 mg quercetin equivalents/g of dry weight) contents, the ultrasonic-assisted extraction is superior to heat and microwave-assisted extractions. Accordingly, it was also observed that the methanol solvent is more profound than ethanol and isopropanol. Further, the bioactive compounds' content and the extracts' antioxidant activity are shown to be highly correlated. Thus, hawthorn extracts are considered to have antioxidant properties because of their concentrated bioactive compounds.\",\"PeriodicalId\":20837,\"journal\":{\"name\":\"Progress in Agricultural Engineering Sciences\",\"volume\":\"37 17\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Agricultural Engineering Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1556/446.2024.00103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Agricultural Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/446.2024.00103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

本研究评估了从山楂果(Crataegus monogyna Jacq.)中回收生物活性化合物的有效溶剂和萃取方法。使用不同的有机溶剂(甲醇、乙醇和异丙醇)在加热、微波和超声辅助下进行萃取,并连续使用 pH 值差法、Folin-Ciocalteu 法和氯化铝法测定总单体花青素(TMA)、总酚类化合物(TPC)和总黄酮类化合物(TFC)的含量。铁还原抗氧化力(FRAP)、2,2-二苯基-1-苦基肼水合物(DPPH)和 2,2′-叠氮双(3-乙基苯并噻唑啉-6-磺酸)(ABTS)测定法用于测量提取物的抗氧化活性(AA)。结果表明,提取方法和溶剂对山楂果提取物的花青素浓度、TPC、TFC、AA 和色值有明显影响。由于超声波辅助提取的TMA(0.152 ± 0.002 mg ECy3Gl/g(干重))、TPC(49.14 ± 0.38 mg没食子酸当量/g(干重))和TFC(18.38 ± 0.19 mg槲皮素当量/g(干重))含量最高,因此超声波辅助提取优于加热和微波辅助提取。相应地,还观察到甲醇溶剂比乙醇和异丙醇的提取效果更好。此外,生物活性化合物的含量与提取物的抗氧化活性高度相关。因此,山楂提取物因其浓缩的生物活性化合物而被认为具有抗氧化特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heat, ultrasound, and microwave assisted extraction methods for recovering bioactive components from hawthorn fruit (Crataegus monogyna Jacq.)
In this work, an assessment of effective solvents and extraction methods was carried out to recover the bioactive compounds from hawthorn fruit (Crataegus monogyna Jacq.). Extractions assisted by heat, microwave, and ultrasound were carried out using various organic solvents (methanol, ethanol, and isopropanol). pH differential, Folin–Ciocalteu's, and aluminum chloride methods were used to determine total monomeric anthocyanin (TMA), total phenolic compound (TPC), and total flavonoid content (TFC), consecutively. Ferric Reducing Antioxidant Power (FRAP), 2,2-Diphenyl-1-picrylhydrazyl Hydrate (DPPH), and 2,2′- azino- bis (3-ethylbenzothiazoline-6- sulfonic acid) (ABTS) assays were used to measure the antioxidant activity (AA) of the extracts. The outputs revealed that extraction methods and solvents significantly affect anthocyanin concentration, TPC, TFC, AA, and color values of hawthorn fruit extracts. Due to the highest recovered TMA (0.152 ± 0.002 mg ECy3Gl/g of dry weight), TPC (49.14 ± 0.38 mg gallic acid equivalents/g of dry weight), and TFC (18.38 ± 0.19 mg quercetin equivalents/g of dry weight) contents, the ultrasonic-assisted extraction is superior to heat and microwave-assisted extractions. Accordingly, it was also observed that the methanol solvent is more profound than ethanol and isopropanol. Further, the bioactive compounds' content and the extracts' antioxidant activity are shown to be highly correlated. Thus, hawthorn extracts are considered to have antioxidant properties because of their concentrated bioactive compounds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Agricultural Engineering Sciences
Progress in Agricultural Engineering Sciences Engineering-Industrial and Manufacturing Engineering
CiteScore
1.80
自引率
0.00%
发文量
6
期刊介绍: The Journal publishes original papers, review papers and preliminary communications in the field of agricultural, environmental and process engineering. The main purpose is to show new scientific results, new developments and procedures with special respect to the engineering of crop production and animal husbandry, soil and water management, precision agriculture, information technology in agriculture, advancements in instrumentation and automation, technical and safety aspects of environmental and food engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信