{"title":"八极电场对光学结合能的贡献","authors":"A. Salam","doi":"10.3390/physics6010025","DOIUrl":null,"url":null,"abstract":"Contributions to the radiation-induced dispersion energy shift between two interacting particles dependent on the electric octupole moment are calculated using a physical picture in which moments induced by applied fluctuating electromagnetic fields are coupled via retarded interaction tensors. The specific potentials evaluated include those found between an electric dipole-polarisable molecule and either a mixed electric dipole–octupole- or purely octupole-polarisable molecule, and those between two mixed electric dipole–octupole-polarisable molecules. Interaction energies are obtained for molecular and pair orientationally averaged situations. Terms dependent on the octupole weight-1 moment may be viewed as higher-order corrections to the leading dipole–dipole interaction energy as also found in energy transfer and dispersion forces. A comprehensive polarisation analysis is carried out for linearly and circularly polarised laser light incident parallel and perpendicular to the inter-particle axis. Contributions to the optical binding energy arising when one of the pair is polar and characterised by either a permanent electric dipole or octupole moment are also evaluated. Neither of these energy shifts survive orientational averaging.","PeriodicalId":20136,"journal":{"name":"Physics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electric Octupole-Dependent Contributions to Optical Binding Energy\",\"authors\":\"A. Salam\",\"doi\":\"10.3390/physics6010025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contributions to the radiation-induced dispersion energy shift between two interacting particles dependent on the electric octupole moment are calculated using a physical picture in which moments induced by applied fluctuating electromagnetic fields are coupled via retarded interaction tensors. The specific potentials evaluated include those found between an electric dipole-polarisable molecule and either a mixed electric dipole–octupole- or purely octupole-polarisable molecule, and those between two mixed electric dipole–octupole-polarisable molecules. Interaction energies are obtained for molecular and pair orientationally averaged situations. Terms dependent on the octupole weight-1 moment may be viewed as higher-order corrections to the leading dipole–dipole interaction energy as also found in energy transfer and dispersion forces. A comprehensive polarisation analysis is carried out for linearly and circularly polarised laser light incident parallel and perpendicular to the inter-particle axis. Contributions to the optical binding energy arising when one of the pair is polar and characterised by either a permanent electric dipole or octupole moment are also evaluated. Neither of these energy shifts survive orientational averaging.\",\"PeriodicalId\":20136,\"journal\":{\"name\":\"Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.3390/physics6010025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.3390/physics6010025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Electric Octupole-Dependent Contributions to Optical Binding Energy
Contributions to the radiation-induced dispersion energy shift between two interacting particles dependent on the electric octupole moment are calculated using a physical picture in which moments induced by applied fluctuating electromagnetic fields are coupled via retarded interaction tensors. The specific potentials evaluated include those found between an electric dipole-polarisable molecule and either a mixed electric dipole–octupole- or purely octupole-polarisable molecule, and those between two mixed electric dipole–octupole-polarisable molecules. Interaction energies are obtained for molecular and pair orientationally averaged situations. Terms dependent on the octupole weight-1 moment may be viewed as higher-order corrections to the leading dipole–dipole interaction energy as also found in energy transfer and dispersion forces. A comprehensive polarisation analysis is carried out for linearly and circularly polarised laser light incident parallel and perpendicular to the inter-particle axis. Contributions to the optical binding energy arising when one of the pair is polar and characterised by either a permanent electric dipole or octupole moment are also evaluated. Neither of these energy shifts survive orientational averaging.