研究一类基尔霍夫型变分不等式的解的存在性和唯一性,涉及使用杨氏量纲

Q2 Mathematics
Mouad Allalou, Abderrahmane Raji, Khalid Hilal
{"title":"研究一类基尔霍夫型变分不等式的解的存在性和唯一性,涉及使用杨氏量纲","authors":"Mouad Allalou,&nbsp;Abderrahmane Raji,&nbsp;Khalid Hilal","doi":"10.1007/s11565-024-00493-w","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is devoted to discussing the existence of solutions for a class of Kirchhoff-type variational inequalities: <span>\\(-\\mathcal {M}\\biggl (\\displaystyle \\int _{\\Omega }\\mathcal {A}(z,\\nabla u )\\mathrm {~d}z\\biggl )~\\displaystyle \\int _{\\Omega }\\mathcal {G}(z,\\nabla u).(\\nabla \\vartheta -\\nabla u)\\mathrm {~d}z \\ge \\displaystyle \\int _{\\Omega }\\Phi (z,u)(\\vartheta -u)\\mathrm {~d}z \\)</span>, for <span>\\(\\upsilon \\)</span> belonging to the following convex set <span>\\(\\mathcal {S}_{\\psi , \\theta }\\)</span>. By employing Young measure theory in conjunction with a theorem formulated by Kinderlehrer and Stampacchia, we attain the intended result.\n</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"70 4","pages":"1301 - 1320"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of the existence and uniqueness of solutions for a class of Kirchhoff-type variational inequalities involving using Young measures\",\"authors\":\"Mouad Allalou,&nbsp;Abderrahmane Raji,&nbsp;Khalid Hilal\",\"doi\":\"10.1007/s11565-024-00493-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper is devoted to discussing the existence of solutions for a class of Kirchhoff-type variational inequalities: <span>\\\\(-\\\\mathcal {M}\\\\biggl (\\\\displaystyle \\\\int _{\\\\Omega }\\\\mathcal {A}(z,\\\\nabla u )\\\\mathrm {~d}z\\\\biggl )~\\\\displaystyle \\\\int _{\\\\Omega }\\\\mathcal {G}(z,\\\\nabla u).(\\\\nabla \\\\vartheta -\\\\nabla u)\\\\mathrm {~d}z \\\\ge \\\\displaystyle \\\\int _{\\\\Omega }\\\\Phi (z,u)(\\\\vartheta -u)\\\\mathrm {~d}z \\\\)</span>, for <span>\\\\(\\\\upsilon \\\\)</span> belonging to the following convex set <span>\\\\(\\\\mathcal {S}_{\\\\psi , \\\\theta }\\\\)</span>. By employing Young measure theory in conjunction with a theorem formulated by Kinderlehrer and Stampacchia, we attain the intended result.\\n</p></div>\",\"PeriodicalId\":35009,\"journal\":{\"name\":\"Annali dell''Universita di Ferrara\",\"volume\":\"70 4\",\"pages\":\"1301 - 1320\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali dell''Universita di Ferrara\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11565-024-00493-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-024-00493-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文致力于讨论一类基尔霍夫型变分不等式的解的存在性:\(-mathcal {M}\biggl (\displaystyle \int _{\Omega }\mathcal {A}(z,\nabla u )\mathrm {~d}z\biggl )~\displaystyle \int _{\Omega }\mathcal {G}(z,\nabla u).(\nabla \vartheta -\nabla u)\mathrm {~d}z \ge \displaystyle int _{\Omega }\Phi (z,u)(\vartheta -u)\mathrm {~d}z \),对于 \(\upsilon \)属于下面的凸集 \(\mathcal {S}_{\psi , \theta }\).通过运用扬测度理论与金德尔勒尔和斯坦帕奇亚提出的定理相结合,我们得到了预期的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of the existence and uniqueness of solutions for a class of Kirchhoff-type variational inequalities involving using Young measures

This paper is devoted to discussing the existence of solutions for a class of Kirchhoff-type variational inequalities: \(-\mathcal {M}\biggl (\displaystyle \int _{\Omega }\mathcal {A}(z,\nabla u )\mathrm {~d}z\biggl )~\displaystyle \int _{\Omega }\mathcal {G}(z,\nabla u).(\nabla \vartheta -\nabla u)\mathrm {~d}z \ge \displaystyle \int _{\Omega }\Phi (z,u)(\vartheta -u)\mathrm {~d}z \), for \(\upsilon \) belonging to the following convex set \(\mathcal {S}_{\psi , \theta }\). By employing Young measure theory in conjunction with a theorem formulated by Kinderlehrer and Stampacchia, we attain the intended result.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annali dell''Universita di Ferrara
Annali dell''Universita di Ferrara Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
71
期刊介绍: Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信