Parween R. Kareem, Husniyah Jasim, Fattah H. Hasan, Sameer Algburi
{"title":"利用遮阳分散策略提高部分遮阳条件下的光伏发电量","authors":"Parween R. Kareem, Husniyah Jasim, Fattah H. Hasan, Sameer Algburi","doi":"10.24237/djes.2024.17104","DOIUrl":null,"url":null,"abstract":"Improving photovoltaic (PV) system efficiency is a popular field of research. Partial shading (PS) adversely impacts the solar system's output power, which considerably reduces the system's efficiency. As a result, this issue has been the subject of extensive investigation. When sunlight is blocked off of photovoltaic cells in a PV array, panel, or module, it is referred to as shading. Using a method that involves spreading shade throughout the PV array is one of the suggested fixes for this issue. This study compares the performance of a shade dispersion method to different PV array configurations under different partial shading circumstances, and it looks at how effective it is in a 3x3 PV system. MATLAB/Simulink is used for the evaluation. To achieve this, shade dispersion-based TCT (SD-TCT) under various shading scenarios has been compared to the current standard designs, which include series-parallel (SP), Honey-Comb (HC), Bridge-Linked (BL), and Total Cross-Tied (TCT). Based on the global maximum power (GMPP), mismatch power losses, fill factor (FF), percentage power losses (PL %), and PV system efficiency, the efficacy of the shade dispersion technique was assessed. For every partial shading condition (PSC) that was studied, the SD-TCT configuration outperforms the other setups in terms of fill factor and power loss.","PeriodicalId":294128,"journal":{"name":"Diyala Journal of Engineering Sciences","volume":"22 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing PV Power Extraction Under Partial Shading Condition with Shade Dispersion Strategy\",\"authors\":\"Parween R. Kareem, Husniyah Jasim, Fattah H. Hasan, Sameer Algburi\",\"doi\":\"10.24237/djes.2024.17104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Improving photovoltaic (PV) system efficiency is a popular field of research. Partial shading (PS) adversely impacts the solar system's output power, which considerably reduces the system's efficiency. As a result, this issue has been the subject of extensive investigation. When sunlight is blocked off of photovoltaic cells in a PV array, panel, or module, it is referred to as shading. Using a method that involves spreading shade throughout the PV array is one of the suggested fixes for this issue. This study compares the performance of a shade dispersion method to different PV array configurations under different partial shading circumstances, and it looks at how effective it is in a 3x3 PV system. MATLAB/Simulink is used for the evaluation. To achieve this, shade dispersion-based TCT (SD-TCT) under various shading scenarios has been compared to the current standard designs, which include series-parallel (SP), Honey-Comb (HC), Bridge-Linked (BL), and Total Cross-Tied (TCT). Based on the global maximum power (GMPP), mismatch power losses, fill factor (FF), percentage power losses (PL %), and PV system efficiency, the efficacy of the shade dispersion technique was assessed. For every partial shading condition (PSC) that was studied, the SD-TCT configuration outperforms the other setups in terms of fill factor and power loss.\",\"PeriodicalId\":294128,\"journal\":{\"name\":\"Diyala Journal of Engineering Sciences\",\"volume\":\"22 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diyala Journal of Engineering Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24237/djes.2024.17104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diyala Journal of Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24237/djes.2024.17104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhancing PV Power Extraction Under Partial Shading Condition with Shade Dispersion Strategy
Improving photovoltaic (PV) system efficiency is a popular field of research. Partial shading (PS) adversely impacts the solar system's output power, which considerably reduces the system's efficiency. As a result, this issue has been the subject of extensive investigation. When sunlight is blocked off of photovoltaic cells in a PV array, panel, or module, it is referred to as shading. Using a method that involves spreading shade throughout the PV array is one of the suggested fixes for this issue. This study compares the performance of a shade dispersion method to different PV array configurations under different partial shading circumstances, and it looks at how effective it is in a 3x3 PV system. MATLAB/Simulink is used for the evaluation. To achieve this, shade dispersion-based TCT (SD-TCT) under various shading scenarios has been compared to the current standard designs, which include series-parallel (SP), Honey-Comb (HC), Bridge-Linked (BL), and Total Cross-Tied (TCT). Based on the global maximum power (GMPP), mismatch power losses, fill factor (FF), percentage power losses (PL %), and PV system efficiency, the efficacy of the shade dispersion technique was assessed. For every partial shading condition (PSC) that was studied, the SD-TCT configuration outperforms the other setups in terms of fill factor and power loss.