具有拉伸-压缩不对称的非线性-弹性顺应机构的分析模型

Brianne Hargrove, M. Frecker, Angela Nastevska, J. Jovanova
{"title":"具有拉伸-压缩不对称的非线性-弹性顺应机构的分析模型","authors":"Brianne Hargrove, M. Frecker, Angela Nastevska, J. Jovanova","doi":"10.1115/1.4065025","DOIUrl":null,"url":null,"abstract":"\n While nonlinear-elastic materials demonstrate potential in enhancing the performance of compliant mechanisms, their behavior still needs to be captured in a generalized mechanical model. To inform new designs and functionality of compliant mechanisms, a better understanding of nonlinear-elastic materials is necessary and, in particular, their mechanical properties that often differ in tension and compression. In the current work, a beam-based analytical model incorporating nonlinear-elastic material behavior is defined for a folding compliant mechanism geometry. Exact equations are derived capturing the nonlinear curvature profile and shift in the neutral axis due to the material asymmetry. The deflection and curvature profile are compared with finite element analysis along with stress-distribution across the beam thickness. The analytical model is shown to be a good approximation of the behavior of nonlinear-elastic materials with tension-compression asymmetry under the assumptions of the von Kármán strain theory. Through a segmentation approach, the geometries of a semicircular arc and folding compliant mechanism design are defined. The deflection of the folding compliant mechanism due to an applied tip load is then evaluated against finite element analysis and experimental results. The generalized methods presented highlight the utility of the model for designing and predicting the behavior of other compliant mechanism geometries and different nonlinear-elastic materials.","PeriodicalId":508172,"journal":{"name":"Journal of Mechanisms and Robotics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Analytical Model for Nonlinear-Elastic Compliant Mechanisms with Tension-Compression Asymmetry\",\"authors\":\"Brianne Hargrove, M. Frecker, Angela Nastevska, J. Jovanova\",\"doi\":\"10.1115/1.4065025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n While nonlinear-elastic materials demonstrate potential in enhancing the performance of compliant mechanisms, their behavior still needs to be captured in a generalized mechanical model. To inform new designs and functionality of compliant mechanisms, a better understanding of nonlinear-elastic materials is necessary and, in particular, their mechanical properties that often differ in tension and compression. In the current work, a beam-based analytical model incorporating nonlinear-elastic material behavior is defined for a folding compliant mechanism geometry. Exact equations are derived capturing the nonlinear curvature profile and shift in the neutral axis due to the material asymmetry. The deflection and curvature profile are compared with finite element analysis along with stress-distribution across the beam thickness. The analytical model is shown to be a good approximation of the behavior of nonlinear-elastic materials with tension-compression asymmetry under the assumptions of the von Kármán strain theory. Through a segmentation approach, the geometries of a semicircular arc and folding compliant mechanism design are defined. The deflection of the folding compliant mechanism due to an applied tip load is then evaluated against finite element analysis and experimental results. The generalized methods presented highlight the utility of the model for designing and predicting the behavior of other compliant mechanism geometries and different nonlinear-elastic materials.\",\"PeriodicalId\":508172,\"journal\":{\"name\":\"Journal of Mechanisms and Robotics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanisms and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4065025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanisms and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4065025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虽然非线性弹性材料在提高顺应式机构性能方面表现出潜力,但其行为仍需要在通用机械模型中加以捕捉。要为顺应机构的新设计和功能提供信息,就必须更好地了解非线性弹性材料,特别是它们在拉伸和压缩时通常不同的机械特性。在当前的研究中,针对折叠式顺应机构的几何形状,定义了一个基于梁的分析模型,其中包含非线性弹性材料行为。精确方程的推导捕捉到了非线性曲率曲线和由于材料不对称造成的中轴线偏移。挠度和曲率曲线与有限元分析以及横梁厚度上的应力分布进行了比较。结果表明,在 von Kármán 应变理论的假设条件下,该分析模型可以很好地逼近具有拉伸-压缩不对称的非线性弹性材料的行为。通过分段方法,定义了半圆弧和折叠顺应机构设计的几何形状。然后,根据有限元分析和实验结果,评估了折叠顺应机构在施加顶端载荷时的挠度。所介绍的通用方法强调了该模型在设计和预测其他顺从机构几何形状和不同非线性弹性材料行为方面的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Analytical Model for Nonlinear-Elastic Compliant Mechanisms with Tension-Compression Asymmetry
While nonlinear-elastic materials demonstrate potential in enhancing the performance of compliant mechanisms, their behavior still needs to be captured in a generalized mechanical model. To inform new designs and functionality of compliant mechanisms, a better understanding of nonlinear-elastic materials is necessary and, in particular, their mechanical properties that often differ in tension and compression. In the current work, a beam-based analytical model incorporating nonlinear-elastic material behavior is defined for a folding compliant mechanism geometry. Exact equations are derived capturing the nonlinear curvature profile and shift in the neutral axis due to the material asymmetry. The deflection and curvature profile are compared with finite element analysis along with stress-distribution across the beam thickness. The analytical model is shown to be a good approximation of the behavior of nonlinear-elastic materials with tension-compression asymmetry under the assumptions of the von Kármán strain theory. Through a segmentation approach, the geometries of a semicircular arc and folding compliant mechanism design are defined. The deflection of the folding compliant mechanism due to an applied tip load is then evaluated against finite element analysis and experimental results. The generalized methods presented highlight the utility of the model for designing and predicting the behavior of other compliant mechanism geometries and different nonlinear-elastic materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信