C. Tessarek, T. Grieb, Florian F. Krause, Christian Petersen, A. Karg, Alexander Hinz, Niels Osterloh, Christian Habben, Stephan Figge, Jon-Olaf Krisponeit, Thomas Schmidt, Jens Falta, A. Rosenauer, Martin Eickhoff
{"title":"原子层沉积与亚原子层沉积:生长速度对 MoS2 和 WS2 光学和结构特性的影响","authors":"C. Tessarek, T. Grieb, Florian F. Krause, Christian Petersen, A. Karg, Alexander Hinz, Niels Osterloh, Christian Habben, Stephan Figge, Jon-Olaf Krisponeit, Thomas Schmidt, Jens Falta, A. Rosenauer, Martin Eickhoff","doi":"10.1088/2053-1583/ad3134","DOIUrl":null,"url":null,"abstract":"\n MoS2 and WS2 mono- and multilayers were grown on SiO2 /Si substrates. Growth by atomic layer deposition at fast growth rates is compared to sub-atomic layer deposition, which is a slow growth rate process with only partial precursor surface coverage per cycle. A Raman spectroscopic analysis of the intensity and frequency difference of the modes reveals different stages of growth from partial to full surface layer coverage followed by layer-by-layer formation. The initial layer thickness and structural quality strongly depends on the growth rate and monolayers only form using sub-atomic layer deposition. Optical activity is demonstrated by photoluminescence characterisation which shows typical excitonic emission from MoS2 and WS2 monolayers. A chemical analysis confirming the stoichiometry of MoS2 is performed by X-ray photoelectron spectroscopy. The surface morphology of layers grown with different growth rates is studied by atomic force microscopy. Plan-view transmission electron microscopy analysis of MoS2 directly grown on freestanding graphene reveals the local crystalline quality of the layers, in agreement with Raman and photoluminescence results.","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"50 9","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomic vs. sub-atomic layer deposition: impact of growth rate on the optical and structural properties of MoS2 and WS2\",\"authors\":\"C. Tessarek, T. Grieb, Florian F. Krause, Christian Petersen, A. Karg, Alexander Hinz, Niels Osterloh, Christian Habben, Stephan Figge, Jon-Olaf Krisponeit, Thomas Schmidt, Jens Falta, A. Rosenauer, Martin Eickhoff\",\"doi\":\"10.1088/2053-1583/ad3134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n MoS2 and WS2 mono- and multilayers were grown on SiO2 /Si substrates. Growth by atomic layer deposition at fast growth rates is compared to sub-atomic layer deposition, which is a slow growth rate process with only partial precursor surface coverage per cycle. A Raman spectroscopic analysis of the intensity and frequency difference of the modes reveals different stages of growth from partial to full surface layer coverage followed by layer-by-layer formation. The initial layer thickness and structural quality strongly depends on the growth rate and monolayers only form using sub-atomic layer deposition. Optical activity is demonstrated by photoluminescence characterisation which shows typical excitonic emission from MoS2 and WS2 monolayers. A chemical analysis confirming the stoichiometry of MoS2 is performed by X-ray photoelectron spectroscopy. The surface morphology of layers grown with different growth rates is studied by atomic force microscopy. Plan-view transmission electron microscopy analysis of MoS2 directly grown on freestanding graphene reveals the local crystalline quality of the layers, in agreement with Raman and photoluminescence results.\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"50 9\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/2053-1583/ad3134\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2053-1583/ad3134","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Atomic vs. sub-atomic layer deposition: impact of growth rate on the optical and structural properties of MoS2 and WS2
MoS2 and WS2 mono- and multilayers were grown on SiO2 /Si substrates. Growth by atomic layer deposition at fast growth rates is compared to sub-atomic layer deposition, which is a slow growth rate process with only partial precursor surface coverage per cycle. A Raman spectroscopic analysis of the intensity and frequency difference of the modes reveals different stages of growth from partial to full surface layer coverage followed by layer-by-layer formation. The initial layer thickness and structural quality strongly depends on the growth rate and monolayers only form using sub-atomic layer deposition. Optical activity is demonstrated by photoluminescence characterisation which shows typical excitonic emission from MoS2 and WS2 monolayers. A chemical analysis confirming the stoichiometry of MoS2 is performed by X-ray photoelectron spectroscopy. The surface morphology of layers grown with different growth rates is studied by atomic force microscopy. Plan-view transmission electron microscopy analysis of MoS2 directly grown on freestanding graphene reveals the local crystalline quality of the layers, in agreement with Raman and photoluminescence results.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.