Moreno Andreatta, Corentin Guichaoua, Nicolas Juillet
{"title":"具有概率度量的度量空间中的新六弦琴定理","authors":"Moreno Andreatta, Corentin Guichaoua, Nicolas Juillet","doi":"10.4171/rsmup/150","DOIUrl":null,"url":null,"abstract":"The Hexachordal Theorem is an intriguing combinatorial property of the sets in Z/12Z discovered and popularized by the musicologist Milton Babbitt (19162011). It has been given several explanations and partial generalizations. Here we enhance how this phenomenon can be understood by giving both a geometrical and a probabilistic perspective. Mathematics Subject Classification (2020). Primary: 00A65; Secondary: 28A75, 05C12, 60Dxx.","PeriodicalId":20997,"journal":{"name":"Rendiconti del Seminario Matematico della Università di Padova","volume":"51 13","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"New hexachordal theorems in metric spaces with a probability measure\",\"authors\":\"Moreno Andreatta, Corentin Guichaoua, Nicolas Juillet\",\"doi\":\"10.4171/rsmup/150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Hexachordal Theorem is an intriguing combinatorial property of the sets in Z/12Z discovered and popularized by the musicologist Milton Babbitt (19162011). It has been given several explanations and partial generalizations. Here we enhance how this phenomenon can be understood by giving both a geometrical and a probabilistic perspective. Mathematics Subject Classification (2020). Primary: 00A65; Secondary: 28A75, 05C12, 60Dxx.\",\"PeriodicalId\":20997,\"journal\":{\"name\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"volume\":\"51 13\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/rsmup/150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti del Seminario Matematico della Università di Padova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/rsmup/150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New hexachordal theorems in metric spaces with a probability measure
The Hexachordal Theorem is an intriguing combinatorial property of the sets in Z/12Z discovered and popularized by the musicologist Milton Babbitt (19162011). It has been given several explanations and partial generalizations. Here we enhance how this phenomenon can be understood by giving both a geometrical and a probabilistic perspective. Mathematics Subject Classification (2020). Primary: 00A65; Secondary: 28A75, 05C12, 60Dxx.