用于农业的能量收集 WSN 的自适应数据传输协议

Q4 Engineering
Pardeep Kaur, Preeti Singh
{"title":"用于农业的能量收集 WSN 的自适应数据传输协议","authors":"Pardeep Kaur, Preeti Singh","doi":"10.26636/jtit.2024.1.1390","DOIUrl":null,"url":null,"abstract":"Energy consumption is a major concern in wireless sensor networks (WSNs) as it affects the lifespan of sensor nodes. Battery-based WSNs have a short operating period, which makes them impractical for real-time applications, for instance in agriculture. Energy harvesting and suitable medium access control (MAC) protocols have been used to extend the lifetime of nodes. Receiver-initiated protocols have been proved to be the best solution for energy harvesting WSNs. However, they suffer from a key disadvantage, i.e. an increase in collision rate. These collisions need to be reduced using a multi-layer protocol structure. In such a context, a new solar-based hybrid MAC (SHMAC) protocol relying on receiver-initiation and characterized by a multi-layer structure is proposed. It is an adaptive protocol capable of adapting to changing weather conditions. The nodes with a high energy harvesting rate have a higher level of residual energy and are active for longer time periods compared with those with low energy harvesting characteristics. The proposed work has shown improvements in two major MAC layer parameters, i.e. collision rate and energy neutrality operation ratio (ENO).","PeriodicalId":38425,"journal":{"name":"Journal of Telecommunications and Information Technology","volume":"128 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Data Transmission Protocols for Energy Harvesting WSNs Used in Agriculture\",\"authors\":\"Pardeep Kaur, Preeti Singh\",\"doi\":\"10.26636/jtit.2024.1.1390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy consumption is a major concern in wireless sensor networks (WSNs) as it affects the lifespan of sensor nodes. Battery-based WSNs have a short operating period, which makes them impractical for real-time applications, for instance in agriculture. Energy harvesting and suitable medium access control (MAC) protocols have been used to extend the lifetime of nodes. Receiver-initiated protocols have been proved to be the best solution for energy harvesting WSNs. However, they suffer from a key disadvantage, i.e. an increase in collision rate. These collisions need to be reduced using a multi-layer protocol structure. In such a context, a new solar-based hybrid MAC (SHMAC) protocol relying on receiver-initiation and characterized by a multi-layer structure is proposed. It is an adaptive protocol capable of adapting to changing weather conditions. The nodes with a high energy harvesting rate have a higher level of residual energy and are active for longer time periods compared with those with low energy harvesting characteristics. The proposed work has shown improvements in two major MAC layer parameters, i.e. collision rate and energy neutrality operation ratio (ENO).\",\"PeriodicalId\":38425,\"journal\":{\"name\":\"Journal of Telecommunications and Information Technology\",\"volume\":\"128 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Telecommunications and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26636/jtit.2024.1.1390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Telecommunications and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26636/jtit.2024.1.1390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

能耗是无线传感器网络(WSN)的一个主要问题,因为它会影响传感器节点的寿命。基于电池的 WSN 运行时间较短,因此不适合农业等领域的实时应用。能量收集和合适的介质访问控制(MAC)协议被用来延长节点的寿命。接收器启动协议已被证明是能量收集 WSN 的最佳解决方案。然而,它们有一个主要缺点,即碰撞率增加。这些碰撞需要通过多层协议结构来减少。在这种情况下,我们提出了一种新的基于太阳能的混合 MAC(SHMAC)协议,它依赖于接收器启动,具有多层结构的特点。这是一种自适应协议,能够适应不断变化的天气条件。与能量收集特性低的节点相比,能量收集率高的节点具有更高的剩余能量,活动时间更长。所提出的工作表明,MAC 层的两个主要参数,即碰撞率和能量中性操作率(ENO)都有所改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Data Transmission Protocols for Energy Harvesting WSNs Used in Agriculture
Energy consumption is a major concern in wireless sensor networks (WSNs) as it affects the lifespan of sensor nodes. Battery-based WSNs have a short operating period, which makes them impractical for real-time applications, for instance in agriculture. Energy harvesting and suitable medium access control (MAC) protocols have been used to extend the lifetime of nodes. Receiver-initiated protocols have been proved to be the best solution for energy harvesting WSNs. However, they suffer from a key disadvantage, i.e. an increase in collision rate. These collisions need to be reduced using a multi-layer protocol structure. In such a context, a new solar-based hybrid MAC (SHMAC) protocol relying on receiver-initiation and characterized by a multi-layer structure is proposed. It is an adaptive protocol capable of adapting to changing weather conditions. The nodes with a high energy harvesting rate have a higher level of residual energy and are active for longer time periods compared with those with low energy harvesting characteristics. The proposed work has shown improvements in two major MAC layer parameters, i.e. collision rate and energy neutrality operation ratio (ENO).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Telecommunications and Information Technology
Journal of Telecommunications and Information Technology Engineering-Electrical and Electronic Engineering
CiteScore
1.20
自引率
0.00%
发文量
34
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信