{"title":"关于萨萨奇曼体上舒腾-范坎彭连接的几乎(eta)-里奇孤子的表征","authors":"Tuğba Mert, M. Atc̣eken, Pakize Uygun","doi":"10.56557/ajomcor/2024/v31i18585","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate Sasakian manifolds that admit almost \\(\\eta\\) -Ricci solitons with respect to the Schouten-van Kampen connection using certain curvature tensors. Concepts of Ricci pseudosymmetry for Sasakian manifolds admitting \\(\\eta\\)-Ricci solitons are introduced based on the selection of specific curvature tensors such as Riemann, concircular, projective, pseudo-projective, M-projective, and W2 tensors. Subsequently, necessary conditions are established for a Sasakian manifold admitting \\(\\eta\\)-Ricci soliton with respect to the Schouten-van Kampen connection to be Ricci semisymmetric, based on the choice of curvature tensors. Characterizations are then derived, and classifications are made under certain conditions.","PeriodicalId":200824,"journal":{"name":"Asian Journal of Mathematics and Computer Research","volume":"251 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of Almost \\\\(\\\\eta\\\\) -Ricci Solitons With Respect to Schouten-van Kampen Connection on Sasakian Manifolds\",\"authors\":\"Tuğba Mert, M. Atc̣eken, Pakize Uygun\",\"doi\":\"10.56557/ajomcor/2024/v31i18585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate Sasakian manifolds that admit almost \\\\(\\\\eta\\\\) -Ricci solitons with respect to the Schouten-van Kampen connection using certain curvature tensors. Concepts of Ricci pseudosymmetry for Sasakian manifolds admitting \\\\(\\\\eta\\\\)-Ricci solitons are introduced based on the selection of specific curvature tensors such as Riemann, concircular, projective, pseudo-projective, M-projective, and W2 tensors. Subsequently, necessary conditions are established for a Sasakian manifold admitting \\\\(\\\\eta\\\\)-Ricci soliton with respect to the Schouten-van Kampen connection to be Ricci semisymmetric, based on the choice of curvature tensors. Characterizations are then derived, and classifications are made under certain conditions.\",\"PeriodicalId\":200824,\"journal\":{\"name\":\"Asian Journal of Mathematics and Computer Research\",\"volume\":\"251 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Mathematics and Computer Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56557/ajomcor/2024/v31i18585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics and Computer Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56557/ajomcor/2024/v31i18585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Characterization of Almost \(\eta\) -Ricci Solitons With Respect to Schouten-van Kampen Connection on Sasakian Manifolds
In this paper, we investigate Sasakian manifolds that admit almost \(\eta\) -Ricci solitons with respect to the Schouten-van Kampen connection using certain curvature tensors. Concepts of Ricci pseudosymmetry for Sasakian manifolds admitting \(\eta\)-Ricci solitons are introduced based on the selection of specific curvature tensors such as Riemann, concircular, projective, pseudo-projective, M-projective, and W2 tensors. Subsequently, necessary conditions are established for a Sasakian manifold admitting \(\eta\)-Ricci soliton with respect to the Schouten-van Kampen connection to be Ricci semisymmetric, based on the choice of curvature tensors. Characterizations are then derived, and classifications are made under certain conditions.