关于萨萨奇曼体上舒腾-范坎彭连接的几乎(eta)-里奇孤子的表征

Tuğba Mert, M. Atc̣eken, Pakize Uygun
{"title":"关于萨萨奇曼体上舒腾-范坎彭连接的几乎(eta)-里奇孤子的表征","authors":"Tuğba Mert, M. Atc̣eken, Pakize Uygun","doi":"10.56557/ajomcor/2024/v31i18585","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate Sasakian manifolds that admit almost \\(\\eta\\) -Ricci solitons with respect to the Schouten-van Kampen connection using certain curvature tensors. Concepts of Ricci pseudosymmetry for Sasakian manifolds admitting \\(\\eta\\)-Ricci solitons are introduced based on the selection of specific curvature tensors such as Riemann, concircular, projective, pseudo-projective, M-projective, and W2 tensors. Subsequently, necessary conditions are established for a Sasakian manifold admitting \\(\\eta\\)-Ricci soliton with respect to the Schouten-van Kampen connection to be Ricci semisymmetric, based on the choice of curvature tensors. Characterizations are then derived, and classifications are made under certain conditions.","PeriodicalId":200824,"journal":{"name":"Asian Journal of Mathematics and Computer Research","volume":"251 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of Almost \\\\(\\\\eta\\\\) -Ricci Solitons With Respect to Schouten-van Kampen Connection on Sasakian Manifolds\",\"authors\":\"Tuğba Mert, M. Atc̣eken, Pakize Uygun\",\"doi\":\"10.56557/ajomcor/2024/v31i18585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate Sasakian manifolds that admit almost \\\\(\\\\eta\\\\) -Ricci solitons with respect to the Schouten-van Kampen connection using certain curvature tensors. Concepts of Ricci pseudosymmetry for Sasakian manifolds admitting \\\\(\\\\eta\\\\)-Ricci solitons are introduced based on the selection of specific curvature tensors such as Riemann, concircular, projective, pseudo-projective, M-projective, and W2 tensors. Subsequently, necessary conditions are established for a Sasakian manifold admitting \\\\(\\\\eta\\\\)-Ricci soliton with respect to the Schouten-van Kampen connection to be Ricci semisymmetric, based on the choice of curvature tensors. Characterizations are then derived, and classifications are made under certain conditions.\",\"PeriodicalId\":200824,\"journal\":{\"name\":\"Asian Journal of Mathematics and Computer Research\",\"volume\":\"251 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Mathematics and Computer Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56557/ajomcor/2024/v31i18585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics and Computer Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56557/ajomcor/2024/v31i18585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们利用某些曲率张量研究了相对于Schouten-van Kampen连接容纳几乎(\eta\)-Ricci孤子的Sasakian流形。在选择特定曲率张量(如黎曼张量、协圆张量、投影张量、伪投影张量、M投影张量和W2张量)的基础上,介绍了容纳(\\eta\)-黎奇孤子的萨萨流形的黎奇假对称性概念。随后,根据曲率张量的选择,建立了允许与舒腾-范坎彭连接相关的(\eta\)-利玛窦孤子的萨萨基流形成为利玛窦半对称性流形的必要条件。然后推导出特征,并在某些条件下进行了分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of Almost \(\eta\) -Ricci Solitons With Respect to Schouten-van Kampen Connection on Sasakian Manifolds
In this paper, we investigate Sasakian manifolds that admit almost \(\eta\) -Ricci solitons with respect to the Schouten-van Kampen connection using certain curvature tensors. Concepts of Ricci pseudosymmetry for Sasakian manifolds admitting \(\eta\)-Ricci solitons are introduced based on the selection of specific curvature tensors such as Riemann, concircular, projective, pseudo-projective, M-projective, and W2 tensors. Subsequently, necessary conditions are established for a Sasakian manifold admitting \(\eta\)-Ricci soliton with respect to the Schouten-van Kampen connection to be Ricci semisymmetric, based on the choice of curvature tensors. Characterizations are then derived, and classifications are made under certain conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信