一般多边形网格上准线性抛物问题的线性化 Crank-Nicolson 虚拟元素方法的无条件最优误差估计

Yang Wang, Huaming Yi, Xiaohong Fan, Guanrong Li
{"title":"一般多边形网格上准线性抛物问题的线性化 Crank-Nicolson 虚拟元素方法的无条件最优误差估计","authors":"Yang Wang, Huaming Yi, Xiaohong Fan, Guanrong Li","doi":"10.1051/m2an/2024017","DOIUrl":null,"url":null,"abstract":"In this paper, we construct, analyze, and numerically validate a linearized Crank-Nicolson virtual element method (VEM) for solving quasilinear parabolic problems on general polygonal meshes. In particular, we consider the more general nonlinear term a(x,u), which does not require Lipschitz continuity or uniform ellipticity conditions. To ensure that the fully discrete solution remains bounded in L∞ norm, we construct two novel elliptic projections and apply a new error splitting technique. With the help of the boundedness of the numerical solution and delicate analysis of the nonlinear term, we derive the optimal error estimates for any k-order VEMs without any time-step restrictions. Numerical experiments on various polygonal meshes validate the accuracy of the theoretical analysis and the unconditional convergence of the proposed scheme.","PeriodicalId":505020,"journal":{"name":"ESAIM: Mathematical Modelling and Numerical Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unconditionally optimal error estimates of linearized Crank-Nicolson Virtual element methods for quasilinear parabolic problems on general polygonal meshes\",\"authors\":\"Yang Wang, Huaming Yi, Xiaohong Fan, Guanrong Li\",\"doi\":\"10.1051/m2an/2024017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we construct, analyze, and numerically validate a linearized Crank-Nicolson virtual element method (VEM) for solving quasilinear parabolic problems on general polygonal meshes. In particular, we consider the more general nonlinear term a(x,u), which does not require Lipschitz continuity or uniform ellipticity conditions. To ensure that the fully discrete solution remains bounded in L∞ norm, we construct two novel elliptic projections and apply a new error splitting technique. With the help of the boundedness of the numerical solution and delicate analysis of the nonlinear term, we derive the optimal error estimates for any k-order VEMs without any time-step restrictions. Numerical experiments on various polygonal meshes validate the accuracy of the theoretical analysis and the unconditional convergence of the proposed scheme.\",\"PeriodicalId\":505020,\"journal\":{\"name\":\"ESAIM: Mathematical Modelling and Numerical Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESAIM: Mathematical Modelling and Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/m2an/2024017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESAIM: Mathematical Modelling and Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/m2an/2024017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文构建、分析并数值验证了线性化 Crank-Nicolson 虚拟元素法(VEM),用于求解一般多边形网格上的准线性抛物线问题。特别是,我们考虑了更一般的非线性项 a(x,u),它不需要 Lipschitz 连续性或均匀椭圆性条件。为确保完全离散解在 L∞ 规范下保持有界,我们构建了两个新的椭圆投影,并应用了一种新的误差分割技术。借助数值解的有界性和对非线性项的精细分析,我们得出了任何 k 阶 VEM 的最优误差估计值,而不受任何时间步长的限制。在各种多边形网格上进行的数值实验验证了理论分析的准确性和所提方案的无条件收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unconditionally optimal error estimates of linearized Crank-Nicolson Virtual element methods for quasilinear parabolic problems on general polygonal meshes
In this paper, we construct, analyze, and numerically validate a linearized Crank-Nicolson virtual element method (VEM) for solving quasilinear parabolic problems on general polygonal meshes. In particular, we consider the more general nonlinear term a(x,u), which does not require Lipschitz continuity or uniform ellipticity conditions. To ensure that the fully discrete solution remains bounded in L∞ norm, we construct two novel elliptic projections and apply a new error splitting technique. With the help of the boundedness of the numerical solution and delicate analysis of the nonlinear term, we derive the optimal error estimates for any k-order VEMs without any time-step restrictions. Numerical experiments on various polygonal meshes validate the accuracy of the theoretical analysis and the unconditional convergence of the proposed scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信