论 k 卢卡斯序列的卷积

Sergio Falcon
{"title":"论 k 卢卡斯序列的卷积","authors":"Sergio Falcon","doi":"10.9734/jamcs/2024/v39i31877","DOIUrl":null,"url":null,"abstract":"In this paper, we study the iterated convolution of the k-Lucas sequences in a form similar to the iterated convolution of the k-Fibonacci sequences [1]. \nA particular case is for the self-convolution of these sequences. Moreover, the generating functions of all these convolved sequences, we find the recurrence relation between the terms of the resulting sequences.","PeriodicalId":503149,"journal":{"name":"Journal of Advances in Mathematics and Computer Science","volume":"11 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Convolution of the k-Lucas Sequences\",\"authors\":\"Sergio Falcon\",\"doi\":\"10.9734/jamcs/2024/v39i31877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the iterated convolution of the k-Lucas sequences in a form similar to the iterated convolution of the k-Fibonacci sequences [1]. \\nA particular case is for the self-convolution of these sequences. Moreover, the generating functions of all these convolved sequences, we find the recurrence relation between the terms of the resulting sequences.\",\"PeriodicalId\":503149,\"journal\":{\"name\":\"Journal of Advances in Mathematics and Computer Science\",\"volume\":\"11 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advances in Mathematics and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/jamcs/2024/v39i31877\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Mathematics and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/jamcs/2024/v39i31877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文以类似于 k-Fibonacci 序列迭代卷积的形式研究 k-Lucas 序列的迭代卷积 [1]。其中一个特殊情况是这些序列的自卷积。此外,在所有这些卷积序列的生成函数中,我们还发现了所得序列项之间的递推关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Convolution of the k-Lucas Sequences
In this paper, we study the iterated convolution of the k-Lucas sequences in a form similar to the iterated convolution of the k-Fibonacci sequences [1]. A particular case is for the self-convolution of these sequences. Moreover, the generating functions of all these convolved sequences, we find the recurrence relation between the terms of the resulting sequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信