通过机器学习建模解读不同制造和加载条件下活塞铝合金的疲劳寿命预测

Mohammad Azadi, Mahmood Matin
{"title":"通过机器学习建模解读不同制造和加载条件下活塞铝合金的疲劳寿命预测","authors":"Mohammad Azadi, Mahmood Matin","doi":"10.3221/igf-esis.68.24","DOIUrl":null,"url":null,"abstract":"Various input variables, including corrosion time, fretting force, stress, lubrication, heat-treating, and nano-particles, were evaluated by modeling of stress-controlled fatigue lifetimes in AlSi12CuNiMg aluminum alloy of the engine pistons with different machine learning (ML) techniques. Bending fatigue experiments were conducted through cyclic loading with zero mean stress, and then experimental data was predicted by five different ML-based models. Moreover, when the optimal ML prediction model was found, it was analyzed using the Shapley additive explanation (SHAP) values method. Results illustrated that extreme gradient boosting (XGBoost) had superior data for estimations, with average training coefficients of determination of at least 63% and 90%, respectively for fatigue lifetime and its logarithmic value. The SHAP values interpretation of the XGBoost model revealed that fretting force, stress, and corrosion time were the most significant inputs in estimating the logarithm values of fatigue lifetimes, respectively.","PeriodicalId":507970,"journal":{"name":"Frattura ed Integrità Strutturale","volume":"132 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interpretation of fatigue lifetime prediction by machine learning modeling in piston aluminum alloys under different manufacturing and loading conditions\",\"authors\":\"Mohammad Azadi, Mahmood Matin\",\"doi\":\"10.3221/igf-esis.68.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various input variables, including corrosion time, fretting force, stress, lubrication, heat-treating, and nano-particles, were evaluated by modeling of stress-controlled fatigue lifetimes in AlSi12CuNiMg aluminum alloy of the engine pistons with different machine learning (ML) techniques. Bending fatigue experiments were conducted through cyclic loading with zero mean stress, and then experimental data was predicted by five different ML-based models. Moreover, when the optimal ML prediction model was found, it was analyzed using the Shapley additive explanation (SHAP) values method. Results illustrated that extreme gradient boosting (XGBoost) had superior data for estimations, with average training coefficients of determination of at least 63% and 90%, respectively for fatigue lifetime and its logarithmic value. The SHAP values interpretation of the XGBoost model revealed that fretting force, stress, and corrosion time were the most significant inputs in estimating the logarithm values of fatigue lifetimes, respectively.\",\"PeriodicalId\":507970,\"journal\":{\"name\":\"Frattura ed Integrità Strutturale\",\"volume\":\"132 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frattura ed Integrità Strutturale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3221/igf-esis.68.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frattura ed Integrità Strutturale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3221/igf-esis.68.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过使用不同的机器学习(ML)技术对发动机活塞的 AlSi12CuNiMg 铝合金的应力控制疲劳寿命建模,评估了各种输入变量,包括腐蚀时间、摩擦力、应力、润滑、热处理和纳米颗粒。通过平均应力为零的循环加载进行了弯曲疲劳实验,然后用五个不同的基于 ML 的模型对实验数据进行了预测。此外,在找到最佳 ML 预测模型后,使用夏普利加法解释(SHAP)值方法对其进行了分析。结果表明,极端梯度提升(XGBoost)的估计数据更优越,疲劳寿命及其对数值的平均训练决定系数分别至少为 63% 和 90%。XGBoost 模型的 SHAP 值解释显示,在估算疲劳寿命对数值时,摩擦力、应力和腐蚀时间分别是最重要的输入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interpretation of fatigue lifetime prediction by machine learning modeling in piston aluminum alloys under different manufacturing and loading conditions
Various input variables, including corrosion time, fretting force, stress, lubrication, heat-treating, and nano-particles, were evaluated by modeling of stress-controlled fatigue lifetimes in AlSi12CuNiMg aluminum alloy of the engine pistons with different machine learning (ML) techniques. Bending fatigue experiments were conducted through cyclic loading with zero mean stress, and then experimental data was predicted by five different ML-based models. Moreover, when the optimal ML prediction model was found, it was analyzed using the Shapley additive explanation (SHAP) values method. Results illustrated that extreme gradient boosting (XGBoost) had superior data for estimations, with average training coefficients of determination of at least 63% and 90%, respectively for fatigue lifetime and its logarithmic value. The SHAP values interpretation of the XGBoost model revealed that fretting force, stress, and corrosion time were the most significant inputs in estimating the logarithm values of fatigue lifetimes, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信