E. Pardo‐Igúzquiza, S. Martos-Rosillo, Jorge Jódar, Peter A. Dowd
{"title":"内华达山脉(西班牙南部)水资源(降雨和降雪)的时空动态变化","authors":"E. Pardo‐Igúzquiza, S. Martos-Rosillo, Jorge Jódar, Peter A. Dowd","doi":"10.3390/resources13030042","DOIUrl":null,"url":null,"abstract":"This paper describes the use of a unique spatio-temporally resolved precipitation and temperature dataset to assess the spatio-temporal dynamics of water resources over a period of almost seven decades across the Sierra Nevada mountain range, which is the most southern Alpine environment in Europe. The altitude and geographical location of this isolated alpine environment makes it a good detector of climate change. The data were generated by applying geostatistical co-kriging to significant instrumental precipitation and temperature (minimum, maximum and mean) datasets. The correlation between precipitation and altitude was not particularly high and the statistical analysis yielded some surprising results in the form of mean annual precipitation maps and yearly precipitation time series. These results confirm the importance of orographic precipitation in the Sierra Nevada mountain range and show a decrease in mean annual precipitation of 33 mm per decade. Seasonality, however, has remained constant throughout the period of the study. The results show that previous studies have overestimated the altitudinal precipitation gradient in the Sierra Nevada and reveal its complex spatial variability. In addition, the results show a clear correspondence between the mean annual precipitation and the NAO index and, to a much lesser extent, the WeMO index. With respect to temperature, there is a high correlation between minimum temperature and altitude (coefficient of correlation = −0.84) and between maximum temperature and altitude (coefficient of correlation = −0.9). Thus, our spatial temperature maps were very similar to topographic maps, but the temporal trend was complex, with negative (decreasing) and positive (increasing) trends. A dynamic model of snowfall can be obtained by using the degree-day methodology. These results should be considered when checking the local performance of climatological models.","PeriodicalId":37723,"journal":{"name":"Resources","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Spatio-Temporal Dynamics of Water Resources (Rainfall and Snow) in the Sierra Nevada Mountain Range (Southern Spain)\",\"authors\":\"E. Pardo‐Igúzquiza, S. Martos-Rosillo, Jorge Jódar, Peter A. Dowd\",\"doi\":\"10.3390/resources13030042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the use of a unique spatio-temporally resolved precipitation and temperature dataset to assess the spatio-temporal dynamics of water resources over a period of almost seven decades across the Sierra Nevada mountain range, which is the most southern Alpine environment in Europe. The altitude and geographical location of this isolated alpine environment makes it a good detector of climate change. The data were generated by applying geostatistical co-kriging to significant instrumental precipitation and temperature (minimum, maximum and mean) datasets. The correlation between precipitation and altitude was not particularly high and the statistical analysis yielded some surprising results in the form of mean annual precipitation maps and yearly precipitation time series. These results confirm the importance of orographic precipitation in the Sierra Nevada mountain range and show a decrease in mean annual precipitation of 33 mm per decade. Seasonality, however, has remained constant throughout the period of the study. The results show that previous studies have overestimated the altitudinal precipitation gradient in the Sierra Nevada and reveal its complex spatial variability. In addition, the results show a clear correspondence between the mean annual precipitation and the NAO index and, to a much lesser extent, the WeMO index. With respect to temperature, there is a high correlation between minimum temperature and altitude (coefficient of correlation = −0.84) and between maximum temperature and altitude (coefficient of correlation = −0.9). Thus, our spatial temperature maps were very similar to topographic maps, but the temporal trend was complex, with negative (decreasing) and positive (increasing) trends. A dynamic model of snowfall can be obtained by using the degree-day methodology. These results should be considered when checking the local performance of climatological models.\",\"PeriodicalId\":37723,\"journal\":{\"name\":\"Resources\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resources\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.3390/resources13030042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.3390/resources13030042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
The Spatio-Temporal Dynamics of Water Resources (Rainfall and Snow) in the Sierra Nevada Mountain Range (Southern Spain)
This paper describes the use of a unique spatio-temporally resolved precipitation and temperature dataset to assess the spatio-temporal dynamics of water resources over a period of almost seven decades across the Sierra Nevada mountain range, which is the most southern Alpine environment in Europe. The altitude and geographical location of this isolated alpine environment makes it a good detector of climate change. The data were generated by applying geostatistical co-kriging to significant instrumental precipitation and temperature (minimum, maximum and mean) datasets. The correlation between precipitation and altitude was not particularly high and the statistical analysis yielded some surprising results in the form of mean annual precipitation maps and yearly precipitation time series. These results confirm the importance of orographic precipitation in the Sierra Nevada mountain range and show a decrease in mean annual precipitation of 33 mm per decade. Seasonality, however, has remained constant throughout the period of the study. The results show that previous studies have overestimated the altitudinal precipitation gradient in the Sierra Nevada and reveal its complex spatial variability. In addition, the results show a clear correspondence between the mean annual precipitation and the NAO index and, to a much lesser extent, the WeMO index. With respect to temperature, there is a high correlation between minimum temperature and altitude (coefficient of correlation = −0.84) and between maximum temperature and altitude (coefficient of correlation = −0.9). Thus, our spatial temperature maps were very similar to topographic maps, but the temporal trend was complex, with negative (decreasing) and positive (increasing) trends. A dynamic model of snowfall can be obtained by using the degree-day methodology. These results should be considered when checking the local performance of climatological models.
ResourcesEnvironmental Science-Nature and Landscape Conservation
CiteScore
7.20
自引率
6.10%
发文量
0
审稿时长
11 weeks
期刊介绍:
Resources (ISSN 2079-9276) is an international, scholarly open access journal on the topic of natural resources. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and methodical details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal: manuscripts regarding research proposals and research ideas will be particularly welcomed, electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Subject Areas: natural resources, water resources, mineral resources, energy resources, land resources, plant and animal resources, genetic resources, ecology resources, resource management and policy, resources conservation and recycling.