深度学习环境下基于 YOLO 的鸟类检测算法优化研究

Pub Date : 2024-03-12 DOI:10.1142/s0219467825500597
Xi Chen, Zhenyu Zhang
{"title":"深度学习环境下基于 YOLO 的鸟类检测算法优化研究","authors":"Xi Chen, Zhenyu Zhang","doi":"10.1142/s0219467825500597","DOIUrl":null,"url":null,"abstract":"Recent environmental degradation has led to an unparalleled decline in wild bird habitats, resulting in a worldwide decrease in bird populations. To prevent extinction, it is vital to implement protective measures. One effective solution could be the application of deep learning techniques to identify bird species and habitats, which would prove useful for bird enthusiasts and rescuers. Therefore, a dataset of 20 globally prized bird species has been collated and analyzed. The Bird-YOLO algorithm precisely identifies avian creatures by combining neural architecture search and knowledge distillation. To diminish noise interference, preprocessing of images and dimension clustering of prior boxes are carried out prior to the training. The experiments show that the Bird-YOLO algorithm attains an 88.23% bird recognition rate, with a frames per second (FPS) of 47.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization Research of Bird Detection Algorithm Based on YOLO in Deep Learning Environment\",\"authors\":\"Xi Chen, Zhenyu Zhang\",\"doi\":\"10.1142/s0219467825500597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent environmental degradation has led to an unparalleled decline in wild bird habitats, resulting in a worldwide decrease in bird populations. To prevent extinction, it is vital to implement protective measures. One effective solution could be the application of deep learning techniques to identify bird species and habitats, which would prove useful for bird enthusiasts and rescuers. Therefore, a dataset of 20 globally prized bird species has been collated and analyzed. The Bird-YOLO algorithm precisely identifies avian creatures by combining neural architecture search and knowledge distillation. To diminish noise interference, preprocessing of images and dimension clustering of prior boxes are carried out prior to the training. The experiments show that the Bird-YOLO algorithm attains an 88.23% bird recognition rate, with a frames per second (FPS) of 47.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219467825500597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219467825500597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近的环境退化导致野生鸟类栖息地空前减少,造成全球鸟类数量下降。为防止鸟类灭绝,采取保护措施至关重要。一个有效的解决方案是应用深度学习技术来识别鸟类物种和栖息地,这将证明对鸟类爱好者和救援人员非常有用。因此,我们整理并分析了 20 种全球珍贵鸟类的数据集。Bird-YOLO 算法结合了神经架构搜索和知识提炼,可以精确识别鸟类生物。为了减少噪声干扰,在训练前对图像进行了预处理,并对先前的方框进行了维度聚类。实验表明,Bird-YOLO 算法的鸟类识别率达到 88.23%,每秒帧数(FPS)为 47。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Optimization Research of Bird Detection Algorithm Based on YOLO in Deep Learning Environment
Recent environmental degradation has led to an unparalleled decline in wild bird habitats, resulting in a worldwide decrease in bird populations. To prevent extinction, it is vital to implement protective measures. One effective solution could be the application of deep learning techniques to identify bird species and habitats, which would prove useful for bird enthusiasts and rescuers. Therefore, a dataset of 20 globally prized bird species has been collated and analyzed. The Bird-YOLO algorithm precisely identifies avian creatures by combining neural architecture search and knowledge distillation. To diminish noise interference, preprocessing of images and dimension clustering of prior boxes are carried out prior to the training. The experiments show that the Bird-YOLO algorithm attains an 88.23% bird recognition rate, with a frames per second (FPS) of 47.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信