具有克拉克次微分类型和 fBm 的 Hilfer 分数中性随机微分夹杂:近似边界可控性

K. Nandhaprasadh, R. Udhayakumar
{"title":"具有克拉克次微分类型和 fBm 的 Hilfer 分数中性随机微分夹杂:近似边界可控性","authors":"K. Nandhaprasadh, R. Udhayakumar","doi":"10.37256/cm.5120243580","DOIUrl":null,"url":null,"abstract":"In this paper, the approximate boundary controllability of Hilfer fractional neutral stochastic differential inclusions with fractional Brownian motion (fBm) and Clarke’s subdifferential in Hilbert space is discussed. The existence of a mild solution of Hilfer fractional neutral stochastic differential inclusions with fractional Brownian motion and Clarke’s subdifferential is proved by using fractional calculus, compact semigroups, the fixed point theorem, stochastic analysis, and multivalued maps. The required conditions for the approximate boundary controllability of this system are defined according to a corresponding linear system that is approximately controllable. To demonstrate how our primary findings may be used, a final example is provided.","PeriodicalId":504505,"journal":{"name":"Contemporary Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hilfer Fractional Neutral Stochastic Differential Inclusions with Clarke’s Subdifferential Type and fBm: Approximate Boundary Controllability\",\"authors\":\"K. Nandhaprasadh, R. Udhayakumar\",\"doi\":\"10.37256/cm.5120243580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the approximate boundary controllability of Hilfer fractional neutral stochastic differential inclusions with fractional Brownian motion (fBm) and Clarke’s subdifferential in Hilbert space is discussed. The existence of a mild solution of Hilfer fractional neutral stochastic differential inclusions with fractional Brownian motion and Clarke’s subdifferential is proved by using fractional calculus, compact semigroups, the fixed point theorem, stochastic analysis, and multivalued maps. The required conditions for the approximate boundary controllability of this system are defined according to a corresponding linear system that is approximately controllable. To demonstrate how our primary findings may be used, a final example is provided.\",\"PeriodicalId\":504505,\"journal\":{\"name\":\"Contemporary Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contemporary Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37256/cm.5120243580\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37256/cm.5120243580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了在希尔伯特空间中具有分数布朗运动(fBm)和克拉克次微分的Hilfer分数中性随机微分夹杂的近似边界可控性。利用分数微积分、紧凑半群、定点定理、随机分析和多值映射证明了具有分数布朗运动和克拉克次微分的 Hilfer 分数中性随机微分夹杂的温和解的存在性。根据近似可控的相应线性系统,定义了该系统近似边界可控性的必要条件。为了演示如何使用我们的主要发现,我们提供了一个最后的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hilfer Fractional Neutral Stochastic Differential Inclusions with Clarke’s Subdifferential Type and fBm: Approximate Boundary Controllability
In this paper, the approximate boundary controllability of Hilfer fractional neutral stochastic differential inclusions with fractional Brownian motion (fBm) and Clarke’s subdifferential in Hilbert space is discussed. The existence of a mild solution of Hilfer fractional neutral stochastic differential inclusions with fractional Brownian motion and Clarke’s subdifferential is proved by using fractional calculus, compact semigroups, the fixed point theorem, stochastic analysis, and multivalued maps. The required conditions for the approximate boundary controllability of this system are defined according to a corresponding linear system that is approximately controllable. To demonstrate how our primary findings may be used, a final example is provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信