成分对铜银金三元纳米合金结构和热力学性质的影响:分子动力学方法研究

Gustavo Cuba-Supanta, Pedro Amao, Fredi Quispe-Huaynasi, Milida Zarella Zarella Pinto Vergara, Elluz Pacheco, S. Flores, Carlos Soncco, Veronica Loaiza-Tacuri, Justo Alcides Rojas Tapia
{"title":"成分对铜银金三元纳米合金结构和热力学性质的影响:分子动力学方法研究","authors":"Gustavo Cuba-Supanta, Pedro Amao, Fredi Quispe-Huaynasi, Milida Zarella Zarella Pinto Vergara, Elluz Pacheco, S. Flores, Carlos Soncco, Veronica Loaiza-Tacuri, Justo Alcides Rojas Tapia","doi":"10.1088/1361-651x/ad332f","DOIUrl":null,"url":null,"abstract":"\n Metal ternary nanoalloys or trimetallic nanoparticles have emerged, in recent years, as novel and relevant materials in different fields due to the synergy of three metals in a single system that leads to unique physicochemical properties as compared to mono- and bimetallic nanoparticles. In this study, the influence of composition on the structural and thermodynamic properties of Cu-Ag-Au nanoalloys with 5083 atoms is analyzed using molecular dynamics simulations. Relevant thermodynamic quantities are used to describe the melting and solidification behaviors of three models of Cu-Ag-Au nanoalloys. Our results indicate that the melting temperature presents linear and quadratic dependencies with the composition, i.e., for Cu33 Ag67−x Aux , Ag33 Cu67−x Aux , and Au33 Ag67−x Cux are Tm = 912.6 + 1.9x, Tm = 882.3 + 2.7x, and Tm = 1056.6 − 4.9x + 0.07x2, respectively. In addition, most Ag atoms segregate to the surface and the Au and Cu atoms are localized in the center of the nanoalloy during the heating process, and this trend is maintained in the cooling process. The solidification temperature does not have an explicit correlation with the composition. Furthermore, the structural analysis of cooled nanoalloys exhibits local FCC and HCP symmetries, and the excess energy shows that Cu33Ag27Au40, Au33Ag17Cu50, and Ag33Cu37Au30 are relatively more stable to form nanoalloys. Finally, the possibility of controlling the composition in these metal nanoalloys opens up potential applications in plasmonic, catalysis, and bactericidal (by Ag surface segregation) fields.","PeriodicalId":503047,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":"13 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The composition effect on the structural and thermodynamic properties of Cu-Ag-Au ternary nanoalloys: A study via molecular dynamics approach\",\"authors\":\"Gustavo Cuba-Supanta, Pedro Amao, Fredi Quispe-Huaynasi, Milida Zarella Zarella Pinto Vergara, Elluz Pacheco, S. Flores, Carlos Soncco, Veronica Loaiza-Tacuri, Justo Alcides Rojas Tapia\",\"doi\":\"10.1088/1361-651x/ad332f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Metal ternary nanoalloys or trimetallic nanoparticles have emerged, in recent years, as novel and relevant materials in different fields due to the synergy of three metals in a single system that leads to unique physicochemical properties as compared to mono- and bimetallic nanoparticles. In this study, the influence of composition on the structural and thermodynamic properties of Cu-Ag-Au nanoalloys with 5083 atoms is analyzed using molecular dynamics simulations. Relevant thermodynamic quantities are used to describe the melting and solidification behaviors of three models of Cu-Ag-Au nanoalloys. Our results indicate that the melting temperature presents linear and quadratic dependencies with the composition, i.e., for Cu33 Ag67−x Aux , Ag33 Cu67−x Aux , and Au33 Ag67−x Cux are Tm = 912.6 + 1.9x, Tm = 882.3 + 2.7x, and Tm = 1056.6 − 4.9x + 0.07x2, respectively. In addition, most Ag atoms segregate to the surface and the Au and Cu atoms are localized in the center of the nanoalloy during the heating process, and this trend is maintained in the cooling process. The solidification temperature does not have an explicit correlation with the composition. Furthermore, the structural analysis of cooled nanoalloys exhibits local FCC and HCP symmetries, and the excess energy shows that Cu33Ag27Au40, Au33Ag17Cu50, and Ag33Cu37Au30 are relatively more stable to form nanoalloys. Finally, the possibility of controlling the composition in these metal nanoalloys opens up potential applications in plasmonic, catalysis, and bactericidal (by Ag surface segregation) fields.\",\"PeriodicalId\":503047,\"journal\":{\"name\":\"Modelling and Simulation in Materials Science and Engineering\",\"volume\":\"13 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modelling and Simulation in Materials Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-651x/ad332f\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-651x/ad332f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,金属三元纳米合金或三金属纳米粒子作为新型相关材料在不同领域崭露头角,这是因为与单金属和双金属纳米粒子相比,三种金属在单一体系中的协同作用产生了独特的物理化学特性。本研究利用分子动力学模拟分析了组成对含 5083 个原子的铜银金纳米合金的结构和热力学性质的影响。相关热力学量用于描述三种模型铜银金纳米合金的熔化和凝固行为。结果表明,熔化温度与成分呈线性和二次函数关系,即 Cu33 Ag67-x Aux、Ag33 Cu67-x Aux 和 Au33 Ag67-x Cux 的熔化温度分别为 Tm = 912.6 + 1.9x、Tm = 882.3 + 2.7x 和 Tm = 1056.6 - 4.9x + 0.07x2。此外,在加热过程中,大多数银原子偏析到表面,而金和铜原子则集中在纳米合金的中心,这一趋势在冷却过程中保持不变。凝固温度与成分没有明确的相关性。此外,冷却纳米合金的结构分析显示出局部 FCC 和 HCP 对称性,过剩能量显示 Cu33Ag27Au40、Au33Ag17Cu50 和 Ag33Cu37Au30 形成纳米合金相对更稳定。最后,控制这些金属纳米合金成分的可能性为其在等离子体、催化和杀菌(通过Ag表面隔离)领域的应用提供了可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The composition effect on the structural and thermodynamic properties of Cu-Ag-Au ternary nanoalloys: A study via molecular dynamics approach
Metal ternary nanoalloys or trimetallic nanoparticles have emerged, in recent years, as novel and relevant materials in different fields due to the synergy of three metals in a single system that leads to unique physicochemical properties as compared to mono- and bimetallic nanoparticles. In this study, the influence of composition on the structural and thermodynamic properties of Cu-Ag-Au nanoalloys with 5083 atoms is analyzed using molecular dynamics simulations. Relevant thermodynamic quantities are used to describe the melting and solidification behaviors of three models of Cu-Ag-Au nanoalloys. Our results indicate that the melting temperature presents linear and quadratic dependencies with the composition, i.e., for Cu33 Ag67−x Aux , Ag33 Cu67−x Aux , and Au33 Ag67−x Cux are Tm = 912.6 + 1.9x, Tm = 882.3 + 2.7x, and Tm = 1056.6 − 4.9x + 0.07x2, respectively. In addition, most Ag atoms segregate to the surface and the Au and Cu atoms are localized in the center of the nanoalloy during the heating process, and this trend is maintained in the cooling process. The solidification temperature does not have an explicit correlation with the composition. Furthermore, the structural analysis of cooled nanoalloys exhibits local FCC and HCP symmetries, and the excess energy shows that Cu33Ag27Au40, Au33Ag17Cu50, and Ag33Cu37Au30 are relatively more stable to form nanoalloys. Finally, the possibility of controlling the composition in these metal nanoalloys opens up potential applications in plasmonic, catalysis, and bactericidal (by Ag surface segregation) fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信