G. Maresca, Abinaya Sankaran, L. J. Santa Maria, Michela Ottaviani, S. Fantini, Kevin M. Ryan, Sergio Brutti, G. Appetecchi
{"title":"硅纳米线阳极在离子液体电解质中的优异兼容性","authors":"G. Maresca, Abinaya Sankaran, L. J. Santa Maria, Michela Ottaviani, S. Fantini, Kevin M. Ryan, Sergio Brutti, G. Appetecchi","doi":"10.20517/energymater.2023.84","DOIUrl":null,"url":null,"abstract":"Silicon nanowire anodes were investigated in lithium-metal cells using different electrolyte formulations based on 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide and N -trimethyl-N -butyl-ammonium bis(fluoro sulfonyl)imide ionic liquids. The lithium insertion process in the silicon anode was analyzed by cyclic voltammetry measurements, performed at different scan rates and for prolonged cycles, combined with impedance spectroscopy analysis. A galvanostatic charge-discharge cycling test was performed to analyze the electrochemical performances using different types of ionic liquids. A study of the Solid Electrolyte Interphase layer on the silicon nanowire electrode surface was carried out through X-ray photoelectron spectroscopy. In general, the silicon anodes in 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide-based electrolytes show very good reversibility, reproducibility, and efficiency in the lithiation process, even at high scan rates, and exhibit a reversible capacity exceeding 1,000 mA h g-1 after 2,000 charge-discharge cycles, corresponding to 46% of the initial value.","PeriodicalId":516209,"journal":{"name":"Energy Materials","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superior compatibility of silicon nanowire anodes in ionic liquid electrolytes\",\"authors\":\"G. Maresca, Abinaya Sankaran, L. J. Santa Maria, Michela Ottaviani, S. Fantini, Kevin M. Ryan, Sergio Brutti, G. Appetecchi\",\"doi\":\"10.20517/energymater.2023.84\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silicon nanowire anodes were investigated in lithium-metal cells using different electrolyte formulations based on 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide and N -trimethyl-N -butyl-ammonium bis(fluoro sulfonyl)imide ionic liquids. The lithium insertion process in the silicon anode was analyzed by cyclic voltammetry measurements, performed at different scan rates and for prolonged cycles, combined with impedance spectroscopy analysis. A galvanostatic charge-discharge cycling test was performed to analyze the electrochemical performances using different types of ionic liquids. A study of the Solid Electrolyte Interphase layer on the silicon nanowire electrode surface was carried out through X-ray photoelectron spectroscopy. In general, the silicon anodes in 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide-based electrolytes show very good reversibility, reproducibility, and efficiency in the lithiation process, even at high scan rates, and exhibit a reversible capacity exceeding 1,000 mA h g-1 after 2,000 charge-discharge cycles, corresponding to 46% of the initial value.\",\"PeriodicalId\":516209,\"journal\":{\"name\":\"Energy Materials\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/energymater.2023.84\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/energymater.2023.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
研究人员使用基于 1-乙基-3-甲基咪唑鎓双(三氟甲基磺酰基)亚胺、1-乙基-3-甲基咪唑鎓双(氟磺酰基)亚胺和 N-三甲基-N-丁基铵双(氟磺酰基)亚胺离子液体的不同电解质配方,对锂金属电池中的硅纳米线阳极进行了研究。通过不同扫描速率和长时间循环的循环伏安测量,结合阻抗光谱分析,对硅阳极的锂插入过程进行了分析。为了分析使用不同类型离子液体的电化学性能,还进行了电静态充放电循环测试。通过 X 射线光电子能谱对硅纳米线电极表面的固体电解质相间层进行了研究。总的来说,在 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide 基电解质中的硅阳极在锂化过程中表现出非常好的可逆性、可重复性和效率,即使在高扫描速率下也是如此,并且在充放电循环 2,000 次后表现出超过 1,000 mA h g-1 的可逆容量,相当于初始值的 46%。
Superior compatibility of silicon nanowire anodes in ionic liquid electrolytes
Silicon nanowire anodes were investigated in lithium-metal cells using different electrolyte formulations based on 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide and N -trimethyl-N -butyl-ammonium bis(fluoro sulfonyl)imide ionic liquids. The lithium insertion process in the silicon anode was analyzed by cyclic voltammetry measurements, performed at different scan rates and for prolonged cycles, combined with impedance spectroscopy analysis. A galvanostatic charge-discharge cycling test was performed to analyze the electrochemical performances using different types of ionic liquids. A study of the Solid Electrolyte Interphase layer on the silicon nanowire electrode surface was carried out through X-ray photoelectron spectroscopy. In general, the silicon anodes in 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide-based electrolytes show very good reversibility, reproducibility, and efficiency in the lithiation process, even at high scan rates, and exhibit a reversible capacity exceeding 1,000 mA h g-1 after 2,000 charge-discharge cycles, corresponding to 46% of the initial value.