数字智能时代分布式大数据流群计算的任务分配算法

Ling Sun, Rong Jiang, Wenbing Wan
{"title":"数字智能时代分布式大数据流群计算的任务分配算法","authors":"Ling Sun, Rong Jiang, Wenbing Wan","doi":"10.3233/jifs-238427","DOIUrl":null,"url":null,"abstract":"In the era of digital intelligence, this paper studies the task allocation algorithm of distributed large data stream group computing, and reasonably allocates the task of group computing to meet the needs of massive computing and analysis of distributed large data stream. According to the idea of swarm intelligence perception and crowdsourcing platform, the task allocation model of distributed large data stream group computing is constructed to realize the task allocation of group computing. A distributed large data stream group computing task model and a user model are constructed, user attributes are initialized by using the accuracy of the answers submitted by users, the possibility that users can participate in the group computing task is predicted by a logistic regression algorithm, so that user candidate sequences participating in the computing task can be obtained, and the accuracy of the user’s real topics and corresponding topics can be grasped by capturing the candidate users’ real topics and evaluating the accuracy algorithm. Select the users who meet the subject area, update the candidate user sequence, and filter the users again on the basis of fully considering the factors such as information gain, user integrity and cost, so as to get the final user sequence and complete the task allocation of group computing. Experiments show that this method can solve the problem of distributed large data flow group computing task allocation, achieve high accuracy, reduce the cost, and effectively improve the information gain.","PeriodicalId":509313,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Task allocation algorithm for distributed large data stream group computing in the era of digital intelligence\",\"authors\":\"Ling Sun, Rong Jiang, Wenbing Wan\",\"doi\":\"10.3233/jifs-238427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the era of digital intelligence, this paper studies the task allocation algorithm of distributed large data stream group computing, and reasonably allocates the task of group computing to meet the needs of massive computing and analysis of distributed large data stream. According to the idea of swarm intelligence perception and crowdsourcing platform, the task allocation model of distributed large data stream group computing is constructed to realize the task allocation of group computing. A distributed large data stream group computing task model and a user model are constructed, user attributes are initialized by using the accuracy of the answers submitted by users, the possibility that users can participate in the group computing task is predicted by a logistic regression algorithm, so that user candidate sequences participating in the computing task can be obtained, and the accuracy of the user’s real topics and corresponding topics can be grasped by capturing the candidate users’ real topics and evaluating the accuracy algorithm. Select the users who meet the subject area, update the candidate user sequence, and filter the users again on the basis of fully considering the factors such as information gain, user integrity and cost, so as to get the final user sequence and complete the task allocation of group computing. Experiments show that this method can solve the problem of distributed large data flow group computing task allocation, achieve high accuracy, reduce the cost, and effectively improve the information gain.\",\"PeriodicalId\":509313,\"journal\":{\"name\":\"Journal of Intelligent & Fuzzy Systems\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent & Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jifs-238427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jifs-238427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在数字智能时代,本文研究了分布式大数据流群计算的任务分配算法,合理分配群计算任务,满足分布式大数据流海量计算和分析的需要。根据群智感知和众包平台的思想,构建了分布式大数据流群计算的任务分配模型,实现了群计算的任务分配。构建了分布式大数据流群体计算任务模型和用户模型,利用用户提交答案的准确率初始化用户属性,通过逻辑回归算法预测用户参与群体计算任务的可能性,从而得到参与计算任务的用户候选序列,并通过捕捉候选用户的真实话题和准确率评估算法,掌握用户真实话题和对应话题的准确率。选择符合主题领域的用户,更新候选用户序列,在充分考虑信息增益、用户完整性和成本等因素的基础上,再次筛选用户,得到最终的用户序列,完成分组计算的任务分配。实验表明,该方法可以解决分布式大数据流分组计算任务分配问题,实现高精度,降低成本,有效提高信息增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Task allocation algorithm for distributed large data stream group computing in the era of digital intelligence
In the era of digital intelligence, this paper studies the task allocation algorithm of distributed large data stream group computing, and reasonably allocates the task of group computing to meet the needs of massive computing and analysis of distributed large data stream. According to the idea of swarm intelligence perception and crowdsourcing platform, the task allocation model of distributed large data stream group computing is constructed to realize the task allocation of group computing. A distributed large data stream group computing task model and a user model are constructed, user attributes are initialized by using the accuracy of the answers submitted by users, the possibility that users can participate in the group computing task is predicted by a logistic regression algorithm, so that user candidate sequences participating in the computing task can be obtained, and the accuracy of the user’s real topics and corresponding topics can be grasped by capturing the candidate users’ real topics and evaluating the accuracy algorithm. Select the users who meet the subject area, update the candidate user sequence, and filter the users again on the basis of fully considering the factors such as information gain, user integrity and cost, so as to get the final user sequence and complete the task allocation of group computing. Experiments show that this method can solve the problem of distributed large data flow group computing task allocation, achieve high accuracy, reduce the cost, and effectively improve the information gain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信