Guo-Shiuan Lin, R. Imhoff, Marc Schleiss, R. Uijlenhoet
{"title":"为荷兰城市应用进行高强度降雨预报","authors":"Guo-Shiuan Lin, R. Imhoff, Marc Schleiss, R. Uijlenhoet","doi":"10.1175/jhm-d-23-0194.1","DOIUrl":null,"url":null,"abstract":"\nRadar rainfall nowcasting has mostly been applied to relatively large (often rural) domains (e.g., river basins), although rainfall nowcasting in small urban areas is expected to be more challenging. Here, we selected 80 events with high rainfall intensities (at least one 1-km2 grid cell experiences precipitation > 15 mm h−1 for 1-h events or 30 mm d−1 for 24-h events) in five urban areas (Maastricht, Eindhoven, The Hague, Amsterdam, and Groningen) in the Netherlands. We evaluated the performance of 9,060 probabilistic nowcasts with 20 ensemble members by applying the short-term ensemble prediction system (STEPS) from Pysteps to every 10-min issue time for the selected events. We found that nowcast errors increased with decreasing (urban) areas especially when below 100 km2. In addition, at 30-min lead time, the underestimation of nowcasts was 38% larger and the discrimination ability was 11% lower for 1-h events than for 24-h events. A set of gridded correction factors for the Netherlands, CARROTS (Climatology-based Adjustments for Radar Rainfall in an Operational Setting) could adjust the bias in real-time QPE and nowcasts by 70%. Yet, nowcasts were still found to underestimate rainfall more than 50% above 40-min lead time compared to the reference, which indicates that this error originates from the nowcasting model itself. Also, CARROTS did not adjust the rainfall spatial distribution in urban areas much. In summary, radar-based nowcasting for urban areas (between 67 and 213 km2) in the Netherlands exhibits a short skillful lead time of about 20 minutes, which can only be used for last-minute warning and preparation.","PeriodicalId":503314,"journal":{"name":"Journal of Hydrometeorology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nowcasting of high-intensity rainfall for urban applications in the Netherlands\",\"authors\":\"Guo-Shiuan Lin, R. Imhoff, Marc Schleiss, R. Uijlenhoet\",\"doi\":\"10.1175/jhm-d-23-0194.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nRadar rainfall nowcasting has mostly been applied to relatively large (often rural) domains (e.g., river basins), although rainfall nowcasting in small urban areas is expected to be more challenging. Here, we selected 80 events with high rainfall intensities (at least one 1-km2 grid cell experiences precipitation > 15 mm h−1 for 1-h events or 30 mm d−1 for 24-h events) in five urban areas (Maastricht, Eindhoven, The Hague, Amsterdam, and Groningen) in the Netherlands. We evaluated the performance of 9,060 probabilistic nowcasts with 20 ensemble members by applying the short-term ensemble prediction system (STEPS) from Pysteps to every 10-min issue time for the selected events. We found that nowcast errors increased with decreasing (urban) areas especially when below 100 km2. In addition, at 30-min lead time, the underestimation of nowcasts was 38% larger and the discrimination ability was 11% lower for 1-h events than for 24-h events. A set of gridded correction factors for the Netherlands, CARROTS (Climatology-based Adjustments for Radar Rainfall in an Operational Setting) could adjust the bias in real-time QPE and nowcasts by 70%. Yet, nowcasts were still found to underestimate rainfall more than 50% above 40-min lead time compared to the reference, which indicates that this error originates from the nowcasting model itself. Also, CARROTS did not adjust the rainfall spatial distribution in urban areas much. In summary, radar-based nowcasting for urban areas (between 67 and 213 km2) in the Netherlands exhibits a short skillful lead time of about 20 minutes, which can only be used for last-minute warning and preparation.\",\"PeriodicalId\":503314,\"journal\":{\"name\":\"Journal of Hydrometeorology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrometeorology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1175/jhm-d-23-0194.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrometeorology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/jhm-d-23-0194.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nowcasting of high-intensity rainfall for urban applications in the Netherlands
Radar rainfall nowcasting has mostly been applied to relatively large (often rural) domains (e.g., river basins), although rainfall nowcasting in small urban areas is expected to be more challenging. Here, we selected 80 events with high rainfall intensities (at least one 1-km2 grid cell experiences precipitation > 15 mm h−1 for 1-h events or 30 mm d−1 for 24-h events) in five urban areas (Maastricht, Eindhoven, The Hague, Amsterdam, and Groningen) in the Netherlands. We evaluated the performance of 9,060 probabilistic nowcasts with 20 ensemble members by applying the short-term ensemble prediction system (STEPS) from Pysteps to every 10-min issue time for the selected events. We found that nowcast errors increased with decreasing (urban) areas especially when below 100 km2. In addition, at 30-min lead time, the underestimation of nowcasts was 38% larger and the discrimination ability was 11% lower for 1-h events than for 24-h events. A set of gridded correction factors for the Netherlands, CARROTS (Climatology-based Adjustments for Radar Rainfall in an Operational Setting) could adjust the bias in real-time QPE and nowcasts by 70%. Yet, nowcasts were still found to underestimate rainfall more than 50% above 40-min lead time compared to the reference, which indicates that this error originates from the nowcasting model itself. Also, CARROTS did not adjust the rainfall spatial distribution in urban areas much. In summary, radar-based nowcasting for urban areas (between 67 and 213 km2) in the Netherlands exhibits a short skillful lead time of about 20 minutes, which can only be used for last-minute warning and preparation.