轨道板下水泥沥青乳化砂浆的物理和机械性能研究

Tao Wang, Shaoliang Wu, Hengqiong Jia, Shanqing Peng, Haiyan Li, Piyan Shao, Zhaoquan Wei, Yi Shi
{"title":"轨道板下水泥沥青乳化砂浆的物理和机械性能研究","authors":"Tao Wang, Shaoliang Wu, Hengqiong Jia, Shanqing Peng, Haiyan Li, Piyan Shao, Zhaoquan Wei, Yi Shi","doi":"10.1108/rs-01-2024-0001","DOIUrl":null,"url":null,"abstract":"PurposeDuring the construction process of the China Railway Track System (CRTS) I type filling layer, the nonwoven fabric bags have been used as grouting templates for cement asphalt (CA) emulsified mortar. The porous structure of nonwoven fabrics endowed the templates with breathability and water permeability. The standard requires that the volume expansion rate of CA mortar must be controlled within 1%–3%, which can generate expansion pressure to ensure that the cavities under track slabs are filled fully. However, the expansion pressure caused some of the water to seep out from the periphery of the filling bag, and it would affect the actual mix proportion of CA mortar. The differences in physical and mechanical properties between the CA mortar under track slabs and the CA mortar formed in the laboratory were studied in this paper. The relevant results could provide important methods for the research of filling layer materials for CRTS I type and other types of ballastless tracks in China.Design/methodology/approachDuring the inspection of filling layer, the samples of CA mortar from different working conditions and raw materials were taken by uncovering the track slabs and drilling cores. The physical and mechanical properties of CA mortar under the filling layer of the slab were systematically analyzed by testing the electrical flux, compressive strength and density of mortar in different parts of the filling layer.FindingsIn this paper, the electric flux, the physical properties and mechanical properties of different parts of CA mortar under the track slab were investigated. The results showed that the density, electric flux and compressive strength of CA mortar were affected by the composition of raw materials for dry powders and different parts of the filling layer. In addition, the electrical flux of CA mortar gradually decreased within 90 days’ age. The electrical flux of samples with the thickness of 54 mm was lower than 500 C. Therefore, the impermeability and durability of CA mortar could be improved by increasing the thickness of filling layer. Besides, the results showed that the compressive strength of CA mortar increased, while the density and electric flux decreased gradually, with the prolongation of hardening time.Originality/valueDuring 90 days' age, the electrical flux of the CA mortar gradually decreased with the increase of specimen thickness and the electrical flux of the specimens with the thickness of 54 mm was lower than 500 C. The impermeability and durability of the CA mortar could be improved by increasing the thickness of filling layer. The proposed method can provide reference for the further development and improvement of CRTS I and CRTS II type ballastless track in China.","PeriodicalId":369838,"journal":{"name":"Railway Sciences","volume":"13 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on physical and mechanical properties of cement asphalt emulsified mortar under track slab\",\"authors\":\"Tao Wang, Shaoliang Wu, Hengqiong Jia, Shanqing Peng, Haiyan Li, Piyan Shao, Zhaoquan Wei, Yi Shi\",\"doi\":\"10.1108/rs-01-2024-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeDuring the construction process of the China Railway Track System (CRTS) I type filling layer, the nonwoven fabric bags have been used as grouting templates for cement asphalt (CA) emulsified mortar. The porous structure of nonwoven fabrics endowed the templates with breathability and water permeability. The standard requires that the volume expansion rate of CA mortar must be controlled within 1%–3%, which can generate expansion pressure to ensure that the cavities under track slabs are filled fully. However, the expansion pressure caused some of the water to seep out from the periphery of the filling bag, and it would affect the actual mix proportion of CA mortar. The differences in physical and mechanical properties between the CA mortar under track slabs and the CA mortar formed in the laboratory were studied in this paper. The relevant results could provide important methods for the research of filling layer materials for CRTS I type and other types of ballastless tracks in China.Design/methodology/approachDuring the inspection of filling layer, the samples of CA mortar from different working conditions and raw materials were taken by uncovering the track slabs and drilling cores. The physical and mechanical properties of CA mortar under the filling layer of the slab were systematically analyzed by testing the electrical flux, compressive strength and density of mortar in different parts of the filling layer.FindingsIn this paper, the electric flux, the physical properties and mechanical properties of different parts of CA mortar under the track slab were investigated. The results showed that the density, electric flux and compressive strength of CA mortar were affected by the composition of raw materials for dry powders and different parts of the filling layer. In addition, the electrical flux of CA mortar gradually decreased within 90 days’ age. The electrical flux of samples with the thickness of 54 mm was lower than 500 C. Therefore, the impermeability and durability of CA mortar could be improved by increasing the thickness of filling layer. Besides, the results showed that the compressive strength of CA mortar increased, while the density and electric flux decreased gradually, with the prolongation of hardening time.Originality/valueDuring 90 days' age, the electrical flux of the CA mortar gradually decreased with the increase of specimen thickness and the electrical flux of the specimens with the thickness of 54 mm was lower than 500 C. The impermeability and durability of the CA mortar could be improved by increasing the thickness of filling layer. The proposed method can provide reference for the further development and improvement of CRTS I and CRTS II type ballastless track in China.\",\"PeriodicalId\":369838,\"journal\":{\"name\":\"Railway Sciences\",\"volume\":\"13 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Railway Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/rs-01-2024-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Railway Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/rs-01-2024-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的 在中国铁路轨道系统(CRTS)I 型填充层施工过程中,无纺布袋被用作水泥沥青(CA)乳化砂浆的灌浆模板。无纺布的多孔结构赋予了模板透气性和透水性。标准规定,CA 砂浆的体积膨胀率必须控制在 1%-3%,这就会产生膨胀压力,以确保轨道板下的空腔得到充分填充。但膨胀压力会导致部分水分从填充袋外围渗出,影响 CA 砂浆的实际混合比例。本文研究了轨道板下的 CA 砂浆与实验室中形成的 CA 砂浆在物理和机械性能上的差异。设计/方法/途径在填充层检测过程中,通过揭开轨道板和钻孔取芯的方法,对不同工况、不同原材料的CA砂浆进行取样。本文研究了轨道板下不同部位 CA 砂浆的电通量、物理性质和力学性能。结果表明,CA 砂浆的密度、电通量和抗压强度受干粉原料成分和填充层不同部位的影响。此外,CA 砂浆的电通量在 90 天龄期内逐渐降低。因此,可以通过增加填充层的厚度来提高 CA 砂浆的抗渗性和耐久性。原创性/价值在 90 天龄期内,CA 砂浆的电通量随着试样厚度的增加而逐渐降低,厚度为 54 mm 的试样的电通量低于 500 C。所提出的方法可为中国 CRTS I 型和 CRTS II 型无砟轨道的进一步发展和改进提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on physical and mechanical properties of cement asphalt emulsified mortar under track slab
PurposeDuring the construction process of the China Railway Track System (CRTS) I type filling layer, the nonwoven fabric bags have been used as grouting templates for cement asphalt (CA) emulsified mortar. The porous structure of nonwoven fabrics endowed the templates with breathability and water permeability. The standard requires that the volume expansion rate of CA mortar must be controlled within 1%–3%, which can generate expansion pressure to ensure that the cavities under track slabs are filled fully. However, the expansion pressure caused some of the water to seep out from the periphery of the filling bag, and it would affect the actual mix proportion of CA mortar. The differences in physical and mechanical properties between the CA mortar under track slabs and the CA mortar formed in the laboratory were studied in this paper. The relevant results could provide important methods for the research of filling layer materials for CRTS I type and other types of ballastless tracks in China.Design/methodology/approachDuring the inspection of filling layer, the samples of CA mortar from different working conditions and raw materials were taken by uncovering the track slabs and drilling cores. The physical and mechanical properties of CA mortar under the filling layer of the slab were systematically analyzed by testing the electrical flux, compressive strength and density of mortar in different parts of the filling layer.FindingsIn this paper, the electric flux, the physical properties and mechanical properties of different parts of CA mortar under the track slab were investigated. The results showed that the density, electric flux and compressive strength of CA mortar were affected by the composition of raw materials for dry powders and different parts of the filling layer. In addition, the electrical flux of CA mortar gradually decreased within 90 days’ age. The electrical flux of samples with the thickness of 54 mm was lower than 500 C. Therefore, the impermeability and durability of CA mortar could be improved by increasing the thickness of filling layer. Besides, the results showed that the compressive strength of CA mortar increased, while the density and electric flux decreased gradually, with the prolongation of hardening time.Originality/valueDuring 90 days' age, the electrical flux of the CA mortar gradually decreased with the increase of specimen thickness and the electrical flux of the specimens with the thickness of 54 mm was lower than 500 C. The impermeability and durability of the CA mortar could be improved by increasing the thickness of filling layer. The proposed method can provide reference for the further development and improvement of CRTS I and CRTS II type ballastless track in China.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信