Aru Ranjan Singh, Thomas Bashford-Rogers, Kurt Debattista, Sumit Hazra
{"title":"用于自动检测钣金冲压件裂纹缺陷的深度学习方法","authors":"Aru Ranjan Singh, Thomas Bashford-Rogers, Kurt Debattista, Sumit Hazra","doi":"10.1177/09544054241236224","DOIUrl":null,"url":null,"abstract":"Sheet metal stamping processes are used primarily for high-volume products produced for a range of sectors, from white goods manufacturing to the automotive and aerospace sectors. However, the process is susceptible to defects. Due to the numerous potential defects that may arise in the stamping product, human inspectors are often deployed for their detection. However, they are unreliable and expensive, especially when operating at production speeds equivalent to the stamping rate. This study investigate CNN-based automatic inspection for stamping defects. The study carried out two sets of experiments. All the Experiments yielded high classification accuracy, recall and precision demonstrating the viability of the CNN method for defect detection in the sheet metal stamping process. Additionally, this study revealed that in limited data confounding factors can be a challenge. The second experiment further explored the impact of small neck defects, harsh lighting and reflections on defect detection. The observations indicated that the model struggled to identify defects occluded by reflections, particularly small neck defects.","PeriodicalId":20663,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning Approach for automatic detection of split defects on sheet metal stamping parts\",\"authors\":\"Aru Ranjan Singh, Thomas Bashford-Rogers, Kurt Debattista, Sumit Hazra\",\"doi\":\"10.1177/09544054241236224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sheet metal stamping processes are used primarily for high-volume products produced for a range of sectors, from white goods manufacturing to the automotive and aerospace sectors. However, the process is susceptible to defects. Due to the numerous potential defects that may arise in the stamping product, human inspectors are often deployed for their detection. However, they are unreliable and expensive, especially when operating at production speeds equivalent to the stamping rate. This study investigate CNN-based automatic inspection for stamping defects. The study carried out two sets of experiments. All the Experiments yielded high classification accuracy, recall and precision demonstrating the viability of the CNN method for defect detection in the sheet metal stamping process. Additionally, this study revealed that in limited data confounding factors can be a challenge. The second experiment further explored the impact of small neck defects, harsh lighting and reflections on defect detection. The observations indicated that the model struggled to identify defects occluded by reflections, particularly small neck defects.\",\"PeriodicalId\":20663,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544054241236224\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544054241236224","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Deep Learning Approach for automatic detection of split defects on sheet metal stamping parts
Sheet metal stamping processes are used primarily for high-volume products produced for a range of sectors, from white goods manufacturing to the automotive and aerospace sectors. However, the process is susceptible to defects. Due to the numerous potential defects that may arise in the stamping product, human inspectors are often deployed for their detection. However, they are unreliable and expensive, especially when operating at production speeds equivalent to the stamping rate. This study investigate CNN-based automatic inspection for stamping defects. The study carried out two sets of experiments. All the Experiments yielded high classification accuracy, recall and precision demonstrating the viability of the CNN method for defect detection in the sheet metal stamping process. Additionally, this study revealed that in limited data confounding factors can be a challenge. The second experiment further explored the impact of small neck defects, harsh lighting and reflections on defect detection. The observations indicated that the model struggled to identify defects occluded by reflections, particularly small neck defects.
期刊介绍:
Manufacturing industries throughout the world are changing very rapidly. New concepts and methods are being developed and exploited to enable efficient and effective manufacturing. Existing manufacturing processes are being improved to meet the requirements of lean and agile manufacturing. The aim of the Journal of Engineering Manufacture is to provide a focus for these developments in engineering manufacture by publishing original papers and review papers covering technological and scientific research, developments and management implementation in manufacturing. This journal is also peer reviewed.
Contributions are welcomed in the broad areas of manufacturing processes, manufacturing technology and factory automation, digital manufacturing, design and manufacturing systems including management relevant to engineering manufacture. Of particular interest at the present time would be papers concerned with digital manufacturing, metrology enabled manufacturing, smart factory, additive manufacturing and composites as well as specialist manufacturing fields like nanotechnology, sustainable & clean manufacturing and bio-manufacturing.
Articles may be Research Papers, Reviews, Technical Notes, or Short Communications.