关于双复值度量空间定点的若干定理及其在积分方程中的应用

A. Murali, K. Muthunagai
{"title":"关于双复值度量空间定点的若干定理及其在积分方程中的应用","authors":"A. Murali, K. Muthunagai","doi":"10.46481/jnsps.2024.1750","DOIUrl":null,"url":null,"abstract":"Recent studies have highlighted fixed point theorems in the context of bicomplex valued metric spaces, utilizing rational type contractions with coefficients defined by two-variable control functions. In our research, we extend these findings by proposing new theorems for identifying common fixed points within bicomplex valued metric spaces, employing rational type contractions characterized by three-variable control functions as coefficients. We have refined the contraction conditions presented in numerous existing theorems by substituting constants with a limited number of control functions for more versatility in bicomplex valued metric spaces. This advancement broadens the scope of several significant findings in the literature. To demonstrate the efficacy of our results, we offer compelling examples that validate our theorems. Furthermore, we apply our primary findings to effectively address the Urysohn integral equation system, showcasing the practical application of our research.","PeriodicalId":342917,"journal":{"name":"Journal of the Nigerian Society of Physical Sciences","volume":"144 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some theorems on fixed points in bi-complex valued metric spaces  with an application to integral equations\",\"authors\":\"A. Murali, K. Muthunagai\",\"doi\":\"10.46481/jnsps.2024.1750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent studies have highlighted fixed point theorems in the context of bicomplex valued metric spaces, utilizing rational type contractions with coefficients defined by two-variable control functions. In our research, we extend these findings by proposing new theorems for identifying common fixed points within bicomplex valued metric spaces, employing rational type contractions characterized by three-variable control functions as coefficients. We have refined the contraction conditions presented in numerous existing theorems by substituting constants with a limited number of control functions for more versatility in bicomplex valued metric spaces. This advancement broadens the scope of several significant findings in the literature. To demonstrate the efficacy of our results, we offer compelling examples that validate our theorems. Furthermore, we apply our primary findings to effectively address the Urysohn integral equation system, showcasing the practical application of our research.\",\"PeriodicalId\":342917,\"journal\":{\"name\":\"Journal of the Nigerian Society of Physical Sciences\",\"volume\":\"144 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Nigerian Society of Physical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46481/jnsps.2024.1750\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Nigerian Society of Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46481/jnsps.2024.1750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近的研究强调了二复值度量空间中的定点定理,利用的是系数由二变控制函数定义的有理型收缩。在我们的研究中,我们扩展了这些发现,提出了在二复值度量空间中识别公共定点的新定理,采用了以三变控制函数为系数的有理类型收缩。我们通过用数量有限的控制函数代替常数,完善了许多现有定理中提出的收缩条件,从而提高了二复值度量空间的通用性。这一进步拓宽了文献中若干重要发现的范围。为了证明我们结果的有效性,我们提供了一些令人信服的例子来验证我们的定理。此外,我们还应用我们的主要发现有效地解决了 Urysohn 积分方程系统,展示了我们研究的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some theorems on fixed points in bi-complex valued metric spaces  with an application to integral equations
Recent studies have highlighted fixed point theorems in the context of bicomplex valued metric spaces, utilizing rational type contractions with coefficients defined by two-variable control functions. In our research, we extend these findings by proposing new theorems for identifying common fixed points within bicomplex valued metric spaces, employing rational type contractions characterized by three-variable control functions as coefficients. We have refined the contraction conditions presented in numerous existing theorems by substituting constants with a limited number of control functions for more versatility in bicomplex valued metric spaces. This advancement broadens the scope of several significant findings in the literature. To demonstrate the efficacy of our results, we offer compelling examples that validate our theorems. Furthermore, we apply our primary findings to effectively address the Urysohn integral equation system, showcasing the practical application of our research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信