Mohammed M. Shabat, Hala El-Khozondar, Salah A. Nassar, Guillaume Zoppi, Yasser Yasser Nassar
{"title":"使用 FDTD 方法设计和优化等离子纳米粒子增强型 Perovskite 太阳能电池。","authors":"Mohammed M. Shabat, Hala El-Khozondar, Salah A. Nassar, Guillaume Zoppi, Yasser Yasser Nassar","doi":"10.51646/jsesd.v13i1.170","DOIUrl":null,"url":null,"abstract":"This study explores how plasmonic nanoparticles affect absorption, transmission, and reflection—three important performance metrics in organic-inorganic halide perovskite solar cells (PSCs). Through an investigation of different types of nanoparticles and their concentration in the composite layer, the study provides important information for improving PSC design in order to increase overall efficiency. The results highlight the importance of the type and volume fraction of nanoparticles in the composite layer, which influence the spectral characteristics of the solar cell, such as absorption, reflection, and transmission. These findings could encourage PSCs to be widely used as a practical and affordable renewable energy source, which would advance the development of affordable and efficient solar energy technologies.","PeriodicalId":509518,"journal":{"name":"Solar Energy and Sustainable Development Journal","volume":"318 2‐3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Optimization of Plasmonic Nanoparticles-Enhanced Perovskite Solar Cells Using the FDTD Method.\",\"authors\":\"Mohammed M. Shabat, Hala El-Khozondar, Salah A. Nassar, Guillaume Zoppi, Yasser Yasser Nassar\",\"doi\":\"10.51646/jsesd.v13i1.170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study explores how plasmonic nanoparticles affect absorption, transmission, and reflection—three important performance metrics in organic-inorganic halide perovskite solar cells (PSCs). Through an investigation of different types of nanoparticles and their concentration in the composite layer, the study provides important information for improving PSC design in order to increase overall efficiency. The results highlight the importance of the type and volume fraction of nanoparticles in the composite layer, which influence the spectral characteristics of the solar cell, such as absorption, reflection, and transmission. These findings could encourage PSCs to be widely used as a practical and affordable renewable energy source, which would advance the development of affordable and efficient solar energy technologies.\",\"PeriodicalId\":509518,\"journal\":{\"name\":\"Solar Energy and Sustainable Development Journal\",\"volume\":\"318 2‐3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy and Sustainable Development Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51646/jsesd.v13i1.170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy and Sustainable Development Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51646/jsesd.v13i1.170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and Optimization of Plasmonic Nanoparticles-Enhanced Perovskite Solar Cells Using the FDTD Method.
This study explores how plasmonic nanoparticles affect absorption, transmission, and reflection—three important performance metrics in organic-inorganic halide perovskite solar cells (PSCs). Through an investigation of different types of nanoparticles and their concentration in the composite layer, the study provides important information for improving PSC design in order to increase overall efficiency. The results highlight the importance of the type and volume fraction of nanoparticles in the composite layer, which influence the spectral characteristics of the solar cell, such as absorption, reflection, and transmission. These findings could encourage PSCs to be widely used as a practical and affordable renewable energy source, which would advance the development of affordable and efficient solar energy technologies.