Puneet Shrama, Ioannis K. Argyros, R. Behl, V. Kanwar
{"title":"容克型迭代方案的稳定性和数据依赖性结果","authors":"Puneet Shrama, Ioannis K. Argyros, R. Behl, V. Kanwar","doi":"10.37256/cm.5120242525","DOIUrl":null,"url":null,"abstract":"We propose and study a new Jungck-type iteration scheme to approximate coincidence points of contractive mappings. The strong convergence, stability, and data dependency results have been discussed. Numerical experiments demonstrate that the newly introduced Jungck-type iteration scheme yields a higher convergence rate in comparison with other Jungck-type iteration schemes available in the literature.","PeriodicalId":504505,"journal":{"name":"Contemporary Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability and Data Dependence Results for Jungck-type Iteration Scheme\",\"authors\":\"Puneet Shrama, Ioannis K. Argyros, R. Behl, V. Kanwar\",\"doi\":\"10.37256/cm.5120242525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose and study a new Jungck-type iteration scheme to approximate coincidence points of contractive mappings. The strong convergence, stability, and data dependency results have been discussed. Numerical experiments demonstrate that the newly introduced Jungck-type iteration scheme yields a higher convergence rate in comparison with other Jungck-type iteration schemes available in the literature.\",\"PeriodicalId\":504505,\"journal\":{\"name\":\"Contemporary Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contemporary Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37256/cm.5120242525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37256/cm.5120242525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stability and Data Dependence Results for Jungck-type Iteration Scheme
We propose and study a new Jungck-type iteration scheme to approximate coincidence points of contractive mappings. The strong convergence, stability, and data dependency results have been discussed. Numerical experiments demonstrate that the newly introduced Jungck-type iteration scheme yields a higher convergence rate in comparison with other Jungck-type iteration schemes available in the literature.