基于深度学习的新型视觉搜索引擎在旅游电子商务平台数字营销中的应用

Yingli Wu, Qiuyan Liu
{"title":"基于深度学习的新型视觉搜索引擎在旅游电子商务平台数字营销中的应用","authors":"Yingli Wu, Qiuyan Liu","doi":"10.4018/joeuc.340386","DOIUrl":null,"url":null,"abstract":"Visual search technology, because of its convenience and high efficiency, is widely used by major tourism e-commerce platforms in product search functions. This study introduces an innovative visual search engine model, namely CLIP-ItP, aiming to thoroughly explore the application potential of visual search in tourism e-commerce. The model is an extension of the CLIP (contrastive language-image pre-training) framework and is developed through three pivotal stages. Firstly, by training an image feature extractor and a linear model, the visual search engine labels images, establishing an experimental visual search engine. Secondly, CLIP-ItP jointly trains multiple text and image encoders, facilitating the integration of multimodal data, including product image labels, categories, names, and attributes. Finally, leveraging user-uploaded images and jointly selected product attributes, CLIP-ItP provides personalized top-k product recommendations.","PeriodicalId":504311,"journal":{"name":"Journal of Organizational and End User Computing","volume":"381 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Deep Learning-Based Visual Search Engine in Digital Marketing for Tourism E-Commerce Platforms\",\"authors\":\"Yingli Wu, Qiuyan Liu\",\"doi\":\"10.4018/joeuc.340386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual search technology, because of its convenience and high efficiency, is widely used by major tourism e-commerce platforms in product search functions. This study introduces an innovative visual search engine model, namely CLIP-ItP, aiming to thoroughly explore the application potential of visual search in tourism e-commerce. The model is an extension of the CLIP (contrastive language-image pre-training) framework and is developed through three pivotal stages. Firstly, by training an image feature extractor and a linear model, the visual search engine labels images, establishing an experimental visual search engine. Secondly, CLIP-ItP jointly trains multiple text and image encoders, facilitating the integration of multimodal data, including product image labels, categories, names, and attributes. Finally, leveraging user-uploaded images and jointly selected product attributes, CLIP-ItP provides personalized top-k product recommendations.\",\"PeriodicalId\":504311,\"journal\":{\"name\":\"Journal of Organizational and End User Computing\",\"volume\":\"381 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Organizational and End User Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/joeuc.340386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organizational and End User Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/joeuc.340386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

视觉搜索技术因其便捷、高效的特点,被各大旅游电商平台广泛应用于产品搜索功能中。本研究引入了一个创新的视觉搜索引擎模型,即 CLIP-ItP,旨在深入探索视觉搜索在旅游电子商务中的应用潜力。该模型是 CLIP(对比语言-图像预训练)框架的扩展,通过三个关键阶段开发而成。首先,通过训练图像特征提取器和线性模型,视觉搜索引擎对图像进行标注,从而建立一个实验性的视觉搜索引擎。其次,CLIP-ItP 联合训练多个文本和图像编码器,促进多模态数据的整合,包括产品图像标签、类别、名称和属性。最后,CLIP-ItP 利用用户上传的图像和联合选择的产品属性,提供个性化的 top-k 产品推荐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Deep Learning-Based Visual Search Engine in Digital Marketing for Tourism E-Commerce Platforms
Visual search technology, because of its convenience and high efficiency, is widely used by major tourism e-commerce platforms in product search functions. This study introduces an innovative visual search engine model, namely CLIP-ItP, aiming to thoroughly explore the application potential of visual search in tourism e-commerce. The model is an extension of the CLIP (contrastive language-image pre-training) framework and is developed through three pivotal stages. Firstly, by training an image feature extractor and a linear model, the visual search engine labels images, establishing an experimental visual search engine. Secondly, CLIP-ItP jointly trains multiple text and image encoders, facilitating the integration of multimodal data, including product image labels, categories, names, and attributes. Finally, leveraging user-uploaded images and jointly selected product attributes, CLIP-ItP provides personalized top-k product recommendations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信