利用空间域滤波器降低伽马相机图像上的泊松噪声研究

Ayu Jati Puspitasari, R. Karthika, Puspa Ayu Nugrahani, Widya Febrianti, Nur Rahmah Hidayati
{"title":"利用空间域滤波器降低伽马相机图像上的泊松噪声研究","authors":"Ayu Jati Puspitasari, R. Karthika, Puspa Ayu Nugrahani, Widya Febrianti, Nur Rahmah Hidayati","doi":"10.55981/gnd.2023.6822","DOIUrl":null,"url":null,"abstract":"A gamma camera image is produced by a gamma camera that detects the gamma radiation emitted by the radioactive substance or radiopharmaceutical injected into the body. The gamma camera image sometimes has noise that can interfere with the diagnosis. This image is commonly affected by a Poisson-type random noise. This research proposes using a spatial domain filter to study Poisson noise reduction in gamma camera images. The image sample used is the image of a mouse injected with Lu-177-DOTA Trastuzumab with 100 µCi activity detected using a dual-head gamma camera with NaI(Tl) detectors. The grayscale image is treated with Poisson noise, then improved using a spatial domain filter. The spatial domain filters used include Mean, Median, Wiener, and Spatial Lowpass Filters. The mean filter is the best one that can reduce Poisson noise among the four applied filters. The best filter size for noise reduction is 3 with MSE 5.07, PSNR 41.08 dB, and SSIM 0.99.","PeriodicalId":32551,"journal":{"name":"Ganendra Majalah IPTEK Nuklir","volume":"2004 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"STUDY OF POISSON NOISE REDUCTION ON GAMMA CAMERA IMAGE USING SPATIAL DOMAIN FILTER\",\"authors\":\"Ayu Jati Puspitasari, R. Karthika, Puspa Ayu Nugrahani, Widya Febrianti, Nur Rahmah Hidayati\",\"doi\":\"10.55981/gnd.2023.6822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A gamma camera image is produced by a gamma camera that detects the gamma radiation emitted by the radioactive substance or radiopharmaceutical injected into the body. The gamma camera image sometimes has noise that can interfere with the diagnosis. This image is commonly affected by a Poisson-type random noise. This research proposes using a spatial domain filter to study Poisson noise reduction in gamma camera images. The image sample used is the image of a mouse injected with Lu-177-DOTA Trastuzumab with 100 µCi activity detected using a dual-head gamma camera with NaI(Tl) detectors. The grayscale image is treated with Poisson noise, then improved using a spatial domain filter. The spatial domain filters used include Mean, Median, Wiener, and Spatial Lowpass Filters. The mean filter is the best one that can reduce Poisson noise among the four applied filters. The best filter size for noise reduction is 3 with MSE 5.07, PSNR 41.08 dB, and SSIM 0.99.\",\"PeriodicalId\":32551,\"journal\":{\"name\":\"Ganendra Majalah IPTEK Nuklir\",\"volume\":\"2004 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ganendra Majalah IPTEK Nuklir\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55981/gnd.2023.6822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ganendra Majalah IPTEK Nuklir","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55981/gnd.2023.6822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

伽马相机图像是由伽马相机产生的,它能检测到注入体内的放射性物质或放射性药物所发出的伽马射线。伽马相机图像有时会出现干扰诊断的噪声。这种图像通常会受到泊松型随机噪声的影响。本研究建议使用空间域滤波器来研究伽马相机图像中的泊松噪声降低问题。所使用的图像样本是一只注射了 Lu-177-DOTA 曲妥珠单抗的小鼠的图像,其活性为 100 µCi,使用带有 NaI(Tl) 探测器的双头伽马相机进行检测。灰度图像采用泊松噪声处理,然后使用空间域滤波器进行改进。使用的空间域滤波器包括均值滤波器、中值滤波器、维纳滤波器和空间低通滤波器。平均值滤波器是四种滤波器中能降低泊松噪声的最佳滤波器。最佳降噪滤波器大小为 3,MSE 为 5.07,PSNR 为 41.08 dB,SSIM 为 0.99。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
STUDY OF POISSON NOISE REDUCTION ON GAMMA CAMERA IMAGE USING SPATIAL DOMAIN FILTER
A gamma camera image is produced by a gamma camera that detects the gamma radiation emitted by the radioactive substance or radiopharmaceutical injected into the body. The gamma camera image sometimes has noise that can interfere with the diagnosis. This image is commonly affected by a Poisson-type random noise. This research proposes using a spatial domain filter to study Poisson noise reduction in gamma camera images. The image sample used is the image of a mouse injected with Lu-177-DOTA Trastuzumab with 100 µCi activity detected using a dual-head gamma camera with NaI(Tl) detectors. The grayscale image is treated with Poisson noise, then improved using a spatial domain filter. The spatial domain filters used include Mean, Median, Wiener, and Spatial Lowpass Filters. The mean filter is the best one that can reduce Poisson noise among the four applied filters. The best filter size for noise reduction is 3 with MSE 5.07, PSNR 41.08 dB, and SSIM 0.99.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信