设计自动化、保护隐私和高效的数字取证框架

Dhwaniket Kamble, M. Salunke
{"title":"设计自动化、保护隐私和高效的数字取证框架","authors":"Dhwaniket Kamble, M. Salunke","doi":"10.32629/jai.v7i5.1270","DOIUrl":null,"url":null,"abstract":"The digital forensic investigation field faces continual challenges due to rapid technological advancements, the widespread use of digital devices, and the exponential growth in stored data. Protecting data privacy has emerged as a critical concern, particularly as traditional forensic techniques grant investigators unrestricted access to potentially sensitive data. While existing research addresses either investigative effectiveness or data privacy, a comprehensive solution that balances both aspects remains elusive. This study introduces a novel digital forensic framework that employs case information, case profiles, and expert knowledge to automate analysis. Machine learning techniques are utilized to identify relevant evidence while prioritizing data privacy. The framework also enhances validation procedures, fostering transparency, and incorporates secure logging mechanisms for increased accountability.","PeriodicalId":508223,"journal":{"name":"Journal of Autonomous Intelligence","volume":"2019 36","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing an automated, privacy preserving, and efficient Digital Forensic Framework\",\"authors\":\"Dhwaniket Kamble, M. Salunke\",\"doi\":\"10.32629/jai.v7i5.1270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The digital forensic investigation field faces continual challenges due to rapid technological advancements, the widespread use of digital devices, and the exponential growth in stored data. Protecting data privacy has emerged as a critical concern, particularly as traditional forensic techniques grant investigators unrestricted access to potentially sensitive data. While existing research addresses either investigative effectiveness or data privacy, a comprehensive solution that balances both aspects remains elusive. This study introduces a novel digital forensic framework that employs case information, case profiles, and expert knowledge to automate analysis. Machine learning techniques are utilized to identify relevant evidence while prioritizing data privacy. The framework also enhances validation procedures, fostering transparency, and incorporates secure logging mechanisms for increased accountability.\",\"PeriodicalId\":508223,\"journal\":{\"name\":\"Journal of Autonomous Intelligence\",\"volume\":\"2019 36\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Autonomous Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32629/jai.v7i5.1270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Autonomous Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32629/jai.v7i5.1270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于技术的飞速发展、数字设备的广泛使用以及存储数据的指数级增长,数字取证调查领域面临着持续的挑战。保护数据隐私已成为一个关键问题,尤其是传统的取证技术允许调查人员不受限制地访问潜在的敏感数据。虽然现有的研究既能解决调查效率问题,也能解决数据隐私问题,但兼顾这两方面的综合解决方案仍然遥遥无期。本研究介绍了一种新型数字取证框架,该框架利用案件信息、案件概况和专家知识来自动进行分析。利用机器学习技术识别相关证据,同时优先考虑数据隐私。该框架还增强了验证程序,提高了透明度,并纳入了安全日志机制以加强问责制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing an automated, privacy preserving, and efficient Digital Forensic Framework
The digital forensic investigation field faces continual challenges due to rapid technological advancements, the widespread use of digital devices, and the exponential growth in stored data. Protecting data privacy has emerged as a critical concern, particularly as traditional forensic techniques grant investigators unrestricted access to potentially sensitive data. While existing research addresses either investigative effectiveness or data privacy, a comprehensive solution that balances both aspects remains elusive. This study introduces a novel digital forensic framework that employs case information, case profiles, and expert knowledge to automate analysis. Machine learning techniques are utilized to identify relevant evidence while prioritizing data privacy. The framework also enhances validation procedures, fostering transparency, and incorporates secure logging mechanisms for increased accountability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信