{"title":"与 n-李双桥相关的马宁三元组","authors":"Ying Chen, Chuangchuang Kang, Jiafeng Lu, Shizhuo Yu","doi":"10.1142/s0219498825502408","DOIUrl":null,"url":null,"abstract":"A bstract . In this paper, we study the Manin triples associated to n -Lie bialgebras. We develop the method of double constructions as well as operad matrices to make n -Lie bialgebras into Manin triples. Then, the related Manin triples lead to a natural construction of metric n -Lie algebras. Moreover, a one-to-one correspondence between the double of n -Lie bialgebras and Manin triples of n -Lie algebras be established.","PeriodicalId":508127,"journal":{"name":"Journal of Algebra and Its Applications","volume":"2020 44","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Manin triples associated to n-Lie bialgebras\",\"authors\":\"Ying Chen, Chuangchuang Kang, Jiafeng Lu, Shizhuo Yu\",\"doi\":\"10.1142/s0219498825502408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A bstract . In this paper, we study the Manin triples associated to n -Lie bialgebras. We develop the method of double constructions as well as operad matrices to make n -Lie bialgebras into Manin triples. Then, the related Manin triples lead to a natural construction of metric n -Lie algebras. Moreover, a one-to-one correspondence between the double of n -Lie bialgebras and Manin triples of n -Lie algebras be established.\",\"PeriodicalId\":508127,\"journal\":{\"name\":\"Journal of Algebra and Its Applications\",\"volume\":\"2020 44\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra and Its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219498825502408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219498825502408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
摘要 .本文研究与 n -Lie 双桥相关的马宁三元组。我们发展了双重构造以及操作数矩阵的方法,将 n -Lie 双桥转化为马宁三元组。然后,通过相关的马宁三元组可以自然地构造出度量 n -Lie 玻尔。此外,还建立了 n -Lie 双桥与 n -Lie 玻尔的马宁三元组之间的一一对应关系。
A bstract . In this paper, we study the Manin triples associated to n -Lie bialgebras. We develop the method of double constructions as well as operad matrices to make n -Lie bialgebras into Manin triples. Then, the related Manin triples lead to a natural construction of metric n -Lie algebras. Moreover, a one-to-one correspondence between the double of n -Lie bialgebras and Manin triples of n -Lie algebras be established.