A. Zhylgeldiyev, D. Chernyshov, S. Haider, T. Mankovits
{"title":"使用 Weaire-Phelan 单元格建立闭孔铝泡沫模型","authors":"A. Zhylgeldiyev, D. Chernyshov, S. Haider, T. Mankovits","doi":"10.1556/1848.2024.00802","DOIUrl":null,"url":null,"abstract":"Design and testing of real materials is a costly process and usually requires some specific equipment. To alleviate this task numerical methods can be leveraged. In this work we show possible modelling technique for closed-cell material structure using Weaire–Phelan unit cells. As an example existing aluminum structures were used and modelled parametrically, allowing to establish different geometrical models for different applications. Numerical simulations for compression was also done on the developed models to reveal the material response. The influence on the cell wall thickness and the friction between the material and the compression plate was investigated. It was found that the friction coefficient has no significant effect on the material response, except in the case where bonded connection was assumed. It was also demonstrated that material response and the porosity controlled by cell wall thickness have an approximately linear relationship with each other. This method proved to be a flexible and alternative solution of real laboratory tests and targeted to reduce costs of material design.","PeriodicalId":37508,"journal":{"name":"International Review of Applied Sciences and Engineering","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling of closed-cell aluminum foam using Weaire–Phelan unit cells\",\"authors\":\"A. Zhylgeldiyev, D. Chernyshov, S. Haider, T. Mankovits\",\"doi\":\"10.1556/1848.2024.00802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Design and testing of real materials is a costly process and usually requires some specific equipment. To alleviate this task numerical methods can be leveraged. In this work we show possible modelling technique for closed-cell material structure using Weaire–Phelan unit cells. As an example existing aluminum structures were used and modelled parametrically, allowing to establish different geometrical models for different applications. Numerical simulations for compression was also done on the developed models to reveal the material response. The influence on the cell wall thickness and the friction between the material and the compression plate was investigated. It was found that the friction coefficient has no significant effect on the material response, except in the case where bonded connection was assumed. It was also demonstrated that material response and the porosity controlled by cell wall thickness have an approximately linear relationship with each other. This method proved to be a flexible and alternative solution of real laboratory tests and targeted to reduce costs of material design.\",\"PeriodicalId\":37508,\"journal\":{\"name\":\"International Review of Applied Sciences and Engineering\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Review of Applied Sciences and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1556/1848.2024.00802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Applied Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/1848.2024.00802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Modelling of closed-cell aluminum foam using Weaire–Phelan unit cells
Design and testing of real materials is a costly process and usually requires some specific equipment. To alleviate this task numerical methods can be leveraged. In this work we show possible modelling technique for closed-cell material structure using Weaire–Phelan unit cells. As an example existing aluminum structures were used and modelled parametrically, allowing to establish different geometrical models for different applications. Numerical simulations for compression was also done on the developed models to reveal the material response. The influence on the cell wall thickness and the friction between the material and the compression plate was investigated. It was found that the friction coefficient has no significant effect on the material response, except in the case where bonded connection was assumed. It was also demonstrated that material response and the porosity controlled by cell wall thickness have an approximately linear relationship with each other. This method proved to be a flexible and alternative solution of real laboratory tests and targeted to reduce costs of material design.
期刊介绍:
International Review of Applied Sciences and Engineering is a peer reviewed journal. It offers a comprehensive range of articles on all aspects of engineering and applied sciences. It provides an international and interdisciplinary platform for the exchange of ideas between engineers, researchers and scholars within the academy and industry. It covers a wide range of application areas including architecture, building services and energetics, civil engineering, electrical engineering and mechatronics, environmental engineering, mechanical engineering, material sciences, applied informatics and management sciences. The aim of the Journal is to provide a location for reporting original research results having international focus with multidisciplinary content. The published papers provide solely new basic information for designers, scholars and developers working in the mentioned fields. The papers reflect the broad categories of interest in: optimisation, simulation, modelling, control techniques, monitoring, and development of new analysis methods, equipment and system conception.