通过学习描述预测药物间的零反应

Fangqi Zhu, Yongqi Zhang, Lei Chen, Bing Qin, Ruifeng Xu
{"title":"通过学习描述预测药物间的零反应","authors":"Fangqi Zhu, Yongqi Zhang, Lei Chen, Bing Qin, Ruifeng Xu","doi":"10.18653/v1/2023.emnlp-main.918","DOIUrl":null,"url":null,"abstract":"Adverse drug-drug interactions~(DDIs) can compromise the effectiveness of concurrent drug administration, posing a significant challenge in healthcare. As the development of new drugs continues, the potential for unknown adverse effects resulting from DDIs becomes a growing concern. Traditional computational methods for DDI prediction may fail to capture interactions for new drugs due to the lack of knowledge. In this paper, we introduce a new problem setup as zero-shot DDI prediction that deals with the case of new drugs. Leveraging textual information from online databases like DrugBank and PubChem, we propose an innovative approach TextDDI with a language model-based DDI predictor and a reinforcement learning~(RL)-based information selector, enabling the selection of concise and pertinent text for accurate DDI prediction on new drugs. Empirical results show the benefits of the proposed approach on several settings including zero-shot and few-shot DDI prediction, and the selected texts are semantically relevant. Our code and data are available at \\url{https://github.com/zhufq00/DDIs-Prediction}.","PeriodicalId":505350,"journal":{"name":"Conference on Empirical Methods in Natural Language Processing","volume":"3 4","pages":"14855-14870"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning to Describe for Predicting Zero-shot Drug-Drug Interactions\",\"authors\":\"Fangqi Zhu, Yongqi Zhang, Lei Chen, Bing Qin, Ruifeng Xu\",\"doi\":\"10.18653/v1/2023.emnlp-main.918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adverse drug-drug interactions~(DDIs) can compromise the effectiveness of concurrent drug administration, posing a significant challenge in healthcare. As the development of new drugs continues, the potential for unknown adverse effects resulting from DDIs becomes a growing concern. Traditional computational methods for DDI prediction may fail to capture interactions for new drugs due to the lack of knowledge. In this paper, we introduce a new problem setup as zero-shot DDI prediction that deals with the case of new drugs. Leveraging textual information from online databases like DrugBank and PubChem, we propose an innovative approach TextDDI with a language model-based DDI predictor and a reinforcement learning~(RL)-based information selector, enabling the selection of concise and pertinent text for accurate DDI prediction on new drugs. Empirical results show the benefits of the proposed approach on several settings including zero-shot and few-shot DDI prediction, and the selected texts are semantically relevant. Our code and data are available at \\\\url{https://github.com/zhufq00/DDIs-Prediction}.\",\"PeriodicalId\":505350,\"journal\":{\"name\":\"Conference on Empirical Methods in Natural Language Processing\",\"volume\":\"3 4\",\"pages\":\"14855-14870\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Empirical Methods in Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2023.emnlp-main.918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Empirical Methods in Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2023.emnlp-main.918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

不良的药物相互作用(DDIs)会影响同时用药的效果,给医疗保健带来巨大挑战。随着新药的不断开发,DDIs 可能导致的未知不良反应日益受到关注。由于缺乏相关知识,传统的 DDI 预测计算方法可能无法捕捉到新药的相互作用。在本文中,我们引入了一个新问题,即针对新药的零次DDI预测。利用来自在线数据库(如 DrugBank 和 PubChem)的文本信息,我们提出了一种创新方法 TextDDI,该方法具有基于语言模型的 DDI 预测器和基于强化学习的信息选择器,能够选择简洁、相关的文本,从而准确预测新药的 DDI。实证结果表明,所提出的方法在零次和少次DDI预测等几种情况下都有优势,而且所选择的文本在语义上是相关的。我们的代码和数据可在(url{https://github.com/zhufq00/DDIs-Prediction})上查阅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning to Describe for Predicting Zero-shot Drug-Drug Interactions
Adverse drug-drug interactions~(DDIs) can compromise the effectiveness of concurrent drug administration, posing a significant challenge in healthcare. As the development of new drugs continues, the potential for unknown adverse effects resulting from DDIs becomes a growing concern. Traditional computational methods for DDI prediction may fail to capture interactions for new drugs due to the lack of knowledge. In this paper, we introduce a new problem setup as zero-shot DDI prediction that deals with the case of new drugs. Leveraging textual information from online databases like DrugBank and PubChem, we propose an innovative approach TextDDI with a language model-based DDI predictor and a reinforcement learning~(RL)-based information selector, enabling the selection of concise and pertinent text for accurate DDI prediction on new drugs. Empirical results show the benefits of the proposed approach on several settings including zero-shot and few-shot DDI prediction, and the selected texts are semantically relevant. Our code and data are available at \url{https://github.com/zhufq00/DDIs-Prediction}.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信