使用强化学习的行走和生存人工智能 - 模拟

Bharate Nandan Lahudeo, Makarand Vayadande, Rohit Malviya, Atharva Haldule
{"title":"使用强化学习的行走和生存人工智能 - 模拟","authors":"Bharate Nandan Lahudeo, Makarand Vayadande, Rohit Malviya, Atharva Haldule","doi":"10.32628/cseit2390629","DOIUrl":null,"url":null,"abstract":"This research paper presents a novel approach to training an AI agent for walking and survival tasks using reinforcement learning (RL) techniques. The primary research question addressed in this study is how to develop an AI system capable of autonomously navigating diverse terrains and environments while ensuring survival through adaptive decision-making. To investigate this question, we employ RL algorithms, specifically deep Q-networks (DQN) and proximal policy optimization (PPO), to train an AI agent in simulated environments that mimic real-world challenges. Our methodology involves designing a virtual environment where the AI agent learns to walk and make survival-related decisions through trial and error. The agent receives rewards or penalties based on its actions, encouraging the development of strategies that optimize both locomotion and survival skills. We evaluate the performance of our approach through extensive experimentation, testing the AI agent's adaptability to various terrains, obstacles, and survival scenarios.              ","PeriodicalId":313456,"journal":{"name":"International Journal of Scientific Research in Computer Science, Engineering and Information Technology","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Walking and Survival AI Using Reinforcement Learning - Simulation\",\"authors\":\"Bharate Nandan Lahudeo, Makarand Vayadande, Rohit Malviya, Atharva Haldule\",\"doi\":\"10.32628/cseit2390629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research paper presents a novel approach to training an AI agent for walking and survival tasks using reinforcement learning (RL) techniques. The primary research question addressed in this study is how to develop an AI system capable of autonomously navigating diverse terrains and environments while ensuring survival through adaptive decision-making. To investigate this question, we employ RL algorithms, specifically deep Q-networks (DQN) and proximal policy optimization (PPO), to train an AI agent in simulated environments that mimic real-world challenges. Our methodology involves designing a virtual environment where the AI agent learns to walk and make survival-related decisions through trial and error. The agent receives rewards or penalties based on its actions, encouraging the development of strategies that optimize both locomotion and survival skills. We evaluate the performance of our approach through extensive experimentation, testing the AI agent's adaptability to various terrains, obstacles, and survival scenarios.              \",\"PeriodicalId\":313456,\"journal\":{\"name\":\"International Journal of Scientific Research in Computer Science, Engineering and Information Technology\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Scientific Research in Computer Science, Engineering and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32628/cseit2390629\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Scientific Research in Computer Science, Engineering and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32628/cseit2390629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究论文介绍了一种利用强化学习(RL)技术训练人工智能代理执行行走和生存任务的新方法。本研究探讨的主要问题是如何开发一种能够自主导航各种地形和环境的人工智能系统,同时通过自适应决策确保生存。为了研究这个问题,我们采用了 RL 算法,特别是深度 Q 网络(DQN)和近端策略优化(PPO),在模拟真实世界挑战的模拟环境中训练人工智能代理。我们的方法包括设计一个虚拟环境,让人工智能代理学会行走,并通过试错做出与生存相关的决定。人工智能代理会根据自己的行动获得奖励或惩罚,从而鼓励开发优化运动和生存技能的策略。我们通过大量实验来评估我们方法的性能,测试人工智能代理对各种地形、障碍和生存场景的适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Walking and Survival AI Using Reinforcement Learning - Simulation
This research paper presents a novel approach to training an AI agent for walking and survival tasks using reinforcement learning (RL) techniques. The primary research question addressed in this study is how to develop an AI system capable of autonomously navigating diverse terrains and environments while ensuring survival through adaptive decision-making. To investigate this question, we employ RL algorithms, specifically deep Q-networks (DQN) and proximal policy optimization (PPO), to train an AI agent in simulated environments that mimic real-world challenges. Our methodology involves designing a virtual environment where the AI agent learns to walk and make survival-related decisions through trial and error. The agent receives rewards or penalties based on its actions, encouraging the development of strategies that optimize both locomotion and survival skills. We evaluate the performance of our approach through extensive experimentation, testing the AI agent's adaptability to various terrains, obstacles, and survival scenarios.              
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信