旋转纳维-斯托克斯-沃伊特流体中热固性对流的稳定性分析

Sweta Sharma, Sunil, Poonam Sharma
{"title":"旋转纳维-斯托克斯-沃伊特流体中热固性对流的稳定性分析","authors":"Sweta Sharma, Sunil, Poonam Sharma","doi":"10.1515/zna-2023-0284","DOIUrl":null,"url":null,"abstract":"\n This work presents nonlinear and linear analyses of the rotating Navier–Stokes–Voigt fluid layer that is simultaneously heated and soluted from below, considering different boundary surfaces. The energy method is used to form the eigenvalue problem for nonlinear analysis, whereas the normal mode analysis is used for the linear analysis. The Rayleigh number is numerically calculated by employing the Galerkin technique. Both nonlinear and linear analyses yield the same Rayleigh number, indicating the absence of subcritical regions and implying global stability. The Kelvin–Voigt parameter doesn’t affect the Rayleigh number for stationary convection. However, the crucial role of this parameter is established through an energy argument. The presence of rotation, Kelvin–Voigt parameter, and solute gradient give rise to oscillatory modes. Also, the effects of rotation and solute gradient are stabilizing on the system, whereas the stabilizing effect of the Kelvin–Voigt parameter becomes evident when convection exhibits an oscillatory behavior.","PeriodicalId":23871,"journal":{"name":"Zeitschrift für Naturforschung A","volume":"50 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability analysis of thermosolutal convection in a rotating Navier–Stokes–Voigt fluid\",\"authors\":\"Sweta Sharma, Sunil, Poonam Sharma\",\"doi\":\"10.1515/zna-2023-0284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This work presents nonlinear and linear analyses of the rotating Navier–Stokes–Voigt fluid layer that is simultaneously heated and soluted from below, considering different boundary surfaces. The energy method is used to form the eigenvalue problem for nonlinear analysis, whereas the normal mode analysis is used for the linear analysis. The Rayleigh number is numerically calculated by employing the Galerkin technique. Both nonlinear and linear analyses yield the same Rayleigh number, indicating the absence of subcritical regions and implying global stability. The Kelvin–Voigt parameter doesn’t affect the Rayleigh number for stationary convection. However, the crucial role of this parameter is established through an energy argument. The presence of rotation, Kelvin–Voigt parameter, and solute gradient give rise to oscillatory modes. Also, the effects of rotation and solute gradient are stabilizing on the system, whereas the stabilizing effect of the Kelvin–Voigt parameter becomes evident when convection exhibits an oscillatory behavior.\",\"PeriodicalId\":23871,\"journal\":{\"name\":\"Zeitschrift für Naturforschung A\",\"volume\":\"50 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift für Naturforschung A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/zna-2023-0284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für Naturforschung A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/zna-2023-0284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究对同时从下方加热和溶解的旋转 Navier-Stokes-Voigt 流体层进行了非线性和线性分析,并考虑了不同的边界表面。在非线性分析中使用能量法来形成特征值问题,而在线性分析中则使用法模分析。雷利数采用伽勒金技术进行数值计算。非线性分析和线性分析都得出了相同的瑞利数,表明不存在次临界区域,并意味着全局稳定性。Kelvin-Voigt 参数对静止对流的瑞利数没有影响。然而,通过能量论证可以确定该参数的关键作用。旋转、Kelvin-Voigt 参数和溶质梯度的存在会产生振荡模式。此外,旋转和溶质梯度对系统的影响是稳定的,而当对流表现出振荡行为时,开尔文-伏依格特参数的稳定作用就变得明显了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability analysis of thermosolutal convection in a rotating Navier–Stokes–Voigt fluid
This work presents nonlinear and linear analyses of the rotating Navier–Stokes–Voigt fluid layer that is simultaneously heated and soluted from below, considering different boundary surfaces. The energy method is used to form the eigenvalue problem for nonlinear analysis, whereas the normal mode analysis is used for the linear analysis. The Rayleigh number is numerically calculated by employing the Galerkin technique. Both nonlinear and linear analyses yield the same Rayleigh number, indicating the absence of subcritical regions and implying global stability. The Kelvin–Voigt parameter doesn’t affect the Rayleigh number for stationary convection. However, the crucial role of this parameter is established through an energy argument. The presence of rotation, Kelvin–Voigt parameter, and solute gradient give rise to oscillatory modes. Also, the effects of rotation and solute gradient are stabilizing on the system, whereas the stabilizing effect of the Kelvin–Voigt parameter becomes evident when convection exhibits an oscillatory behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信