关于双次随机矩阵哈达积的次缺陷

E. Choi, B. Chao, I. Choi, A. Chung, A. Mermigas, R. Shah
{"title":"关于双次随机矩阵哈达积的次缺陷","authors":"E. Choi, B. Chao, I. Choi, A. Chung, A. Mermigas, R. Shah","doi":"10.37418/amsj.13.1.4","DOIUrl":null,"url":null,"abstract":"The \\emph{sub-defect} of $A$, defined as $\\mathrm{sd}(A) = \\lceil n - \\mbox{sum}(A) \\rceil,$ is the minimum number of rows and columns required to be added to transform a doubly substochastic matrix into a doubly stochastic matrix. Here, $n$ is the size of $A$ and $\\mbox{sum}(A)$ is the sum of all entries of matrix $A.$ In this paper, we show that for arbitrary doubly substochastic matrices $A$ and $B$, the Hadamard product $A \\circ B$ is also a doubly substochastic matrix, and $ \\max \\{sd(A),sd(B)\\}\\leq sd(A \\circ B) \\leq \\max\\{n, sd(A)+sd(B)\\}. $","PeriodicalId":231117,"journal":{"name":"Advances in Mathematics: Scientific Journal","volume":"14 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON SUB-DEFECT OF HADAMARD PRODUCT OF DOUBLY SUBSTOCHASTIC MATRICES\",\"authors\":\"E. Choi, B. Chao, I. Choi, A. Chung, A. Mermigas, R. Shah\",\"doi\":\"10.37418/amsj.13.1.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The \\\\emph{sub-defect} of $A$, defined as $\\\\mathrm{sd}(A) = \\\\lceil n - \\\\mbox{sum}(A) \\\\rceil,$ is the minimum number of rows and columns required to be added to transform a doubly substochastic matrix into a doubly stochastic matrix. Here, $n$ is the size of $A$ and $\\\\mbox{sum}(A)$ is the sum of all entries of matrix $A.$ In this paper, we show that for arbitrary doubly substochastic matrices $A$ and $B$, the Hadamard product $A \\\\circ B$ is also a doubly substochastic matrix, and $ \\\\max \\\\{sd(A),sd(B)\\\\}\\\\leq sd(A \\\\circ B) \\\\leq \\\\max\\\\{n, sd(A)+sd(B)\\\\}. $\",\"PeriodicalId\":231117,\"journal\":{\"name\":\"Advances in Mathematics: Scientific Journal\",\"volume\":\"14 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics: Scientific Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37418/amsj.13.1.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics: Scientific Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37418/amsj.13.1.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

$A$ 的 \emph{sub-defect} 定义为 $\mathrm{sd}(A) = \lceil n - \mbox{sum}(A) \rceil,$ 是将双亚随机矩阵转换为双随机矩阵所需的最少行列数。这里,$n$ 是 $A$ 的大小,$mbox{sum}(A)$ 是矩阵 $A 所有条目的总和。在本文中,我们证明了对于任意的双亚随机矩阵 $A$ 和 $B$,哈达玛乘积 $A \circ B$ 也是一个双亚随机矩阵,并且 $\max \{sd(A),sd(B)\}leq sd(A \circ B) \leq \max\{n, sd(A)+sd(B)\}.$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON SUB-DEFECT OF HADAMARD PRODUCT OF DOUBLY SUBSTOCHASTIC MATRICES
The \emph{sub-defect} of $A$, defined as $\mathrm{sd}(A) = \lceil n - \mbox{sum}(A) \rceil,$ is the minimum number of rows and columns required to be added to transform a doubly substochastic matrix into a doubly stochastic matrix. Here, $n$ is the size of $A$ and $\mbox{sum}(A)$ is the sum of all entries of matrix $A.$ In this paper, we show that for arbitrary doubly substochastic matrices $A$ and $B$, the Hadamard product $A \circ B$ is also a doubly substochastic matrix, and $ \max \{sd(A),sd(B)\}\leq sd(A \circ B) \leq \max\{n, sd(A)+sd(B)\}. $
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信