E. Choi, B. Chao, I. Choi, A. Chung, A. Mermigas, R. Shah
{"title":"关于双次随机矩阵哈达积的次缺陷","authors":"E. Choi, B. Chao, I. Choi, A. Chung, A. Mermigas, R. Shah","doi":"10.37418/amsj.13.1.4","DOIUrl":null,"url":null,"abstract":"The \\emph{sub-defect} of $A$, defined as $\\mathrm{sd}(A) = \\lceil n - \\mbox{sum}(A) \\rceil,$ is the minimum number of rows and columns required to be added to transform a doubly substochastic matrix into a doubly stochastic matrix. Here, $n$ is the size of $A$ and $\\mbox{sum}(A)$ is the sum of all entries of matrix $A.$ In this paper, we show that for arbitrary doubly substochastic matrices $A$ and $B$, the Hadamard product $A \\circ B$ is also a doubly substochastic matrix, and $ \\max \\{sd(A),sd(B)\\}\\leq sd(A \\circ B) \\leq \\max\\{n, sd(A)+sd(B)\\}. $","PeriodicalId":231117,"journal":{"name":"Advances in Mathematics: Scientific Journal","volume":"14 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON SUB-DEFECT OF HADAMARD PRODUCT OF DOUBLY SUBSTOCHASTIC MATRICES\",\"authors\":\"E. Choi, B. Chao, I. Choi, A. Chung, A. Mermigas, R. Shah\",\"doi\":\"10.37418/amsj.13.1.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The \\\\emph{sub-defect} of $A$, defined as $\\\\mathrm{sd}(A) = \\\\lceil n - \\\\mbox{sum}(A) \\\\rceil,$ is the minimum number of rows and columns required to be added to transform a doubly substochastic matrix into a doubly stochastic matrix. Here, $n$ is the size of $A$ and $\\\\mbox{sum}(A)$ is the sum of all entries of matrix $A.$ In this paper, we show that for arbitrary doubly substochastic matrices $A$ and $B$, the Hadamard product $A \\\\circ B$ is also a doubly substochastic matrix, and $ \\\\max \\\\{sd(A),sd(B)\\\\}\\\\leq sd(A \\\\circ B) \\\\leq \\\\max\\\\{n, sd(A)+sd(B)\\\\}. $\",\"PeriodicalId\":231117,\"journal\":{\"name\":\"Advances in Mathematics: Scientific Journal\",\"volume\":\"14 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics: Scientific Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37418/amsj.13.1.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics: Scientific Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37418/amsj.13.1.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ON SUB-DEFECT OF HADAMARD PRODUCT OF DOUBLY SUBSTOCHASTIC MATRICES
The \emph{sub-defect} of $A$, defined as $\mathrm{sd}(A) = \lceil n - \mbox{sum}(A) \rceil,$ is the minimum number of rows and columns required to be added to transform a doubly substochastic matrix into a doubly stochastic matrix. Here, $n$ is the size of $A$ and $\mbox{sum}(A)$ is the sum of all entries of matrix $A.$ In this paper, we show that for arbitrary doubly substochastic matrices $A$ and $B$, the Hadamard product $A \circ B$ is also a doubly substochastic matrix, and $ \max \{sd(A),sd(B)\}\leq sd(A \circ B) \leq \max\{n, sd(A)+sd(B)\}. $