{"title":"矩阵积的规范不等式","authors":"Ahmad Al-Natoor","doi":"10.1007/s44146-024-00121-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we prove some new norm inequalities for product of matrices. Among other results, we prove that if <i>A</i> and <i>B</i> are <i>n</i> <span>\\(\\times \\)</span> <i>n</i> complex matrices, then </p><div><div><span>$$\\begin{aligned} \\left| \\left| \\left| \\text { }\\left| AB^{*}\\right| ^{2}\\right| \\right| \\right| \\le \\min (\\left| \\left| \\left| B^{*}B\\right| \\right| \\right| \\left\\| A^{*}A\\right\\| ,\\left| \\left| \\left| A^{*}A\\right| \\right| \\right| \\left\\| B^{*}B\\right\\| ). \\end{aligned}$$</span></div></div><p>In particular, if <span>\\(\\left| \\left| \\left| \\cdot \\right| \\right| \\right| =\\left\\| \\cdot \\right\\| ,\\)</span> then </p><div><div><span>$$\\begin{aligned} \\left\\| AB^{*}\\right\\| ^{2}\\le \\left\\| A^{*}A\\right\\| \\left\\| B^{*}B\\right\\| , \\end{aligned}$$</span></div></div><p>which is known as the Cauchy–Schwarz inequality. Also, we prove that if <i>A</i> and <i>B</i> are <i>n</i> <span>\\(\\times \\)</span> <i>n</i> complex matrices, then </p><div><div><span>$$\\begin{aligned} \\text { }\\left\\| AB^{*}\\right\\| ^{2}\\le w\\left( A^{*}AB^{*}B\\right) , \\end{aligned}$$</span></div></div><p>which is a refinement of the above Cauchy–Schwarz inequality. Here <span>\\( \\left| \\left| \\left| \\cdot \\right| \\right| \\right| ,\\)</span> <span>\\(\\left\\| \\cdot \\right\\| ,\\)</span> and <span>\\(w(\\cdot )\\)</span> denote any unitarily invariant norm, the spectral norm, and the numerical radius of matrices, respectively.</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"91 1-2","pages":"153 - 160"},"PeriodicalIF":0.6000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Norm inequalities for product of matrices\",\"authors\":\"Ahmad Al-Natoor\",\"doi\":\"10.1007/s44146-024-00121-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we prove some new norm inequalities for product of matrices. Among other results, we prove that if <i>A</i> and <i>B</i> are <i>n</i> <span>\\\\(\\\\times \\\\)</span> <i>n</i> complex matrices, then </p><div><div><span>$$\\\\begin{aligned} \\\\left| \\\\left| \\\\left| \\\\text { }\\\\left| AB^{*}\\\\right| ^{2}\\\\right| \\\\right| \\\\right| \\\\le \\\\min (\\\\left| \\\\left| \\\\left| B^{*}B\\\\right| \\\\right| \\\\right| \\\\left\\\\| A^{*}A\\\\right\\\\| ,\\\\left| \\\\left| \\\\left| A^{*}A\\\\right| \\\\right| \\\\right| \\\\left\\\\| B^{*}B\\\\right\\\\| ). \\\\end{aligned}$$</span></div></div><p>In particular, if <span>\\\\(\\\\left| \\\\left| \\\\left| \\\\cdot \\\\right| \\\\right| \\\\right| =\\\\left\\\\| \\\\cdot \\\\right\\\\| ,\\\\)</span> then </p><div><div><span>$$\\\\begin{aligned} \\\\left\\\\| AB^{*}\\\\right\\\\| ^{2}\\\\le \\\\left\\\\| A^{*}A\\\\right\\\\| \\\\left\\\\| B^{*}B\\\\right\\\\| , \\\\end{aligned}$$</span></div></div><p>which is known as the Cauchy–Schwarz inequality. Also, we prove that if <i>A</i> and <i>B</i> are <i>n</i> <span>\\\\(\\\\times \\\\)</span> <i>n</i> complex matrices, then </p><div><div><span>$$\\\\begin{aligned} \\\\text { }\\\\left\\\\| AB^{*}\\\\right\\\\| ^{2}\\\\le w\\\\left( A^{*}AB^{*}B\\\\right) , \\\\end{aligned}$$</span></div></div><p>which is a refinement of the above Cauchy–Schwarz inequality. Here <span>\\\\( \\\\left| \\\\left| \\\\left| \\\\cdot \\\\right| \\\\right| \\\\right| ,\\\\)</span> <span>\\\\(\\\\left\\\\| \\\\cdot \\\\right\\\\| ,\\\\)</span> and <span>\\\\(w(\\\\cdot )\\\\)</span> denote any unitarily invariant norm, the spectral norm, and the numerical radius of matrices, respectively.</p></div>\",\"PeriodicalId\":46939,\"journal\":{\"name\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"volume\":\"91 1-2\",\"pages\":\"153 - 160\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s44146-024-00121-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-024-00121-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
In this paper, we prove some new norm inequalities for product of matrices. Among other results, we prove that if A and B are n\(\times \)n complex matrices, then
which is a refinement of the above Cauchy–Schwarz inequality. Here \( \left| \left| \left| \cdot \right| \right| \right| ,\)\(\left\| \cdot \right\| ,\) and \(w(\cdot )\) denote any unitarily invariant norm, the spectral norm, and the numerical radius of matrices, respectively.