Wei Zhang, Linyao Yu, Yaoqin Shi, Yingtian Zhang, Min Xu, Yang Xu, Chunmei Li, Jingwei Tian
{"title":"NK3 受体信号在躁郁症中的新作用","authors":"Wei Zhang, Linyao Yu, Yaoqin Shi, Yingtian Zhang, Min Xu, Yang Xu, Chunmei Li, Jingwei Tian","doi":"10.25082/jpbr.2023.01.003","DOIUrl":null,"url":null,"abstract":"Objective: Bipolar disorder (BD) affects more than 1% of the global population with limited therapeutic options. The neurokinin B (NKB)-neurokinin B receptor (NK3R) is involved in a variety of emotional activities. This study explored the role of NK3 receptor signaling in bipolar disorder.Materials and methods: In this study, a model of intracerebroventricular (ICV) administration of OUA-induced BD was used to investigate the possible role of NK3R signaling in BD. The involvement of NK3R in the expression of OUA-induced BD was assessed by genetically knocking down the NK3R-encoding TACR3 gene with shRNA approach in the hippocampus and systemic administration of a NK3R antagonist ESN364,. Biochemical techniques were used to examine the NK3R-associated signaling changes and the oxidative stress parameters in the hippocampus of BD rats.Result: The NK3R expression level was elevated in the hippocampus BD rats. Both TACR3 knockdown in the hippocampus and ESN364 treatment reversed the manic-like and depression-like behaviors in BD rats Inhibition of the NK3R signaling reversed oxidative stress-induced damage via upregulating the BDNF signaling pathway in the hippocampus.Conclusion: These results demonstrated that NK3R signaling plays a key role in the pathogenesis of BD and that pharmacological antagonist of NK3R such as ESN364 could represent a novel therapeutic strategy for the management of BD.","PeriodicalId":16703,"journal":{"name":"Journal of Pharmaceutical and Biopharmaceutical Research","volume":"2 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel role of NK3 receptor signaling in bipolar disorder\",\"authors\":\"Wei Zhang, Linyao Yu, Yaoqin Shi, Yingtian Zhang, Min Xu, Yang Xu, Chunmei Li, Jingwei Tian\",\"doi\":\"10.25082/jpbr.2023.01.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective: Bipolar disorder (BD) affects more than 1% of the global population with limited therapeutic options. The neurokinin B (NKB)-neurokinin B receptor (NK3R) is involved in a variety of emotional activities. This study explored the role of NK3 receptor signaling in bipolar disorder.Materials and methods: In this study, a model of intracerebroventricular (ICV) administration of OUA-induced BD was used to investigate the possible role of NK3R signaling in BD. The involvement of NK3R in the expression of OUA-induced BD was assessed by genetically knocking down the NK3R-encoding TACR3 gene with shRNA approach in the hippocampus and systemic administration of a NK3R antagonist ESN364,. Biochemical techniques were used to examine the NK3R-associated signaling changes and the oxidative stress parameters in the hippocampus of BD rats.Result: The NK3R expression level was elevated in the hippocampus BD rats. Both TACR3 knockdown in the hippocampus and ESN364 treatment reversed the manic-like and depression-like behaviors in BD rats Inhibition of the NK3R signaling reversed oxidative stress-induced damage via upregulating the BDNF signaling pathway in the hippocampus.Conclusion: These results demonstrated that NK3R signaling plays a key role in the pathogenesis of BD and that pharmacological antagonist of NK3R such as ESN364 could represent a novel therapeutic strategy for the management of BD.\",\"PeriodicalId\":16703,\"journal\":{\"name\":\"Journal of Pharmaceutical and Biopharmaceutical Research\",\"volume\":\"2 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pharmaceutical and Biopharmaceutical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25082/jpbr.2023.01.003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmaceutical and Biopharmaceutical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25082/jpbr.2023.01.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel role of NK3 receptor signaling in bipolar disorder
Objective: Bipolar disorder (BD) affects more than 1% of the global population with limited therapeutic options. The neurokinin B (NKB)-neurokinin B receptor (NK3R) is involved in a variety of emotional activities. This study explored the role of NK3 receptor signaling in bipolar disorder.Materials and methods: In this study, a model of intracerebroventricular (ICV) administration of OUA-induced BD was used to investigate the possible role of NK3R signaling in BD. The involvement of NK3R in the expression of OUA-induced BD was assessed by genetically knocking down the NK3R-encoding TACR3 gene with shRNA approach in the hippocampus and systemic administration of a NK3R antagonist ESN364,. Biochemical techniques were used to examine the NK3R-associated signaling changes and the oxidative stress parameters in the hippocampus of BD rats.Result: The NK3R expression level was elevated in the hippocampus BD rats. Both TACR3 knockdown in the hippocampus and ESN364 treatment reversed the manic-like and depression-like behaviors in BD rats Inhibition of the NK3R signaling reversed oxidative stress-induced damage via upregulating the BDNF signaling pathway in the hippocampus.Conclusion: These results demonstrated that NK3R signaling plays a key role in the pathogenesis of BD and that pharmacological antagonist of NK3R such as ESN364 could represent a novel therapeutic strategy for the management of BD.