基于稳健指标均值的方法,用于估算结构方程模型框架内的广义理论绝对误差和相关可信度指标

Psych Pub Date : 2024-03-14 DOI:10.3390/psych6010024
Hyeryung Lee, Walter P. Vispoel
{"title":"基于稳健指标均值的方法,用于估算结构方程模型框架内的广义理论绝对误差和相关可信度指标","authors":"Hyeryung Lee, Walter P. Vispoel","doi":"10.3390/psych6010024","DOIUrl":null,"url":null,"abstract":"In this study, we introduce a novel and robust approach for computing Generalizability Theory (GT) absolute error and related dependability indices using indicator intercepts that represent observed means within structural equation models (SEMs). We demonstrate the applicability of our method using one-, two-, and three-facet designs with self-report measures having varying numbers of scale points. Results for the indicator mean-based method align well with those obtained from the GENOVA and R gtheory packages for doing conventional GT analyses and improve upon previously suggested methods for deriving absolute error and corresponding dependability indices from SEMs when analyzing three-facet designs. We further extend our approach to derive Monte Carlo confidence intervals for all key indices and to incorporate estimation procedures that correct for scale coarseness effects commonly observed when analyzing binary or ordinal data.","PeriodicalId":93139,"journal":{"name":"Psych","volume":"39 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Robust Indicator Mean-Based Method for Estimating Generalizability Theory Absolute Error and Related Dependability Indices within Structural Equation Modeling Frameworks\",\"authors\":\"Hyeryung Lee, Walter P. Vispoel\",\"doi\":\"10.3390/psych6010024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we introduce a novel and robust approach for computing Generalizability Theory (GT) absolute error and related dependability indices using indicator intercepts that represent observed means within structural equation models (SEMs). We demonstrate the applicability of our method using one-, two-, and three-facet designs with self-report measures having varying numbers of scale points. Results for the indicator mean-based method align well with those obtained from the GENOVA and R gtheory packages for doing conventional GT analyses and improve upon previously suggested methods for deriving absolute error and corresponding dependability indices from SEMs when analyzing three-facet designs. We further extend our approach to derive Monte Carlo confidence intervals for all key indices and to incorporate estimation procedures that correct for scale coarseness effects commonly observed when analyzing binary or ordinal data.\",\"PeriodicalId\":93139,\"journal\":{\"name\":\"Psych\",\"volume\":\"39 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psych\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/psych6010024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psych","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/psych6010024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们介绍了一种新颖、稳健的方法,利用结构方程模型(SEM)中代表观察均值的指标截距计算广义相对论(GT)绝对误差和相关的可信度指数。我们使用具有不同量表点数的自我报告量表,通过单、双和三方面设计证明了我们方法的适用性。基于指标均值方法的结果与使用 GENOVA 和 R gtheory 软件包进行传统 GT 分析所得到的结果非常吻合,并且在分析三方面设计时,改进了之前提出的从 SEM 中得出绝对误差和相应可信度指数的方法。我们进一步扩展了我们的方法,以推导出所有关键指数的蒙特卡罗置信区间,并纳入了估计程序,以纠正在分析二进制或序数数据时通常观察到的尺度粗化效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Robust Indicator Mean-Based Method for Estimating Generalizability Theory Absolute Error and Related Dependability Indices within Structural Equation Modeling Frameworks
In this study, we introduce a novel and robust approach for computing Generalizability Theory (GT) absolute error and related dependability indices using indicator intercepts that represent observed means within structural equation models (SEMs). We demonstrate the applicability of our method using one-, two-, and three-facet designs with self-report measures having varying numbers of scale points. Results for the indicator mean-based method align well with those obtained from the GENOVA and R gtheory packages for doing conventional GT analyses and improve upon previously suggested methods for deriving absolute error and corresponding dependability indices from SEMs when analyzing three-facet designs. We further extend our approach to derive Monte Carlo confidence intervals for all key indices and to incorporate estimation procedures that correct for scale coarseness effects commonly observed when analyzing binary or ordinal data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信