Zhou-Qiao Dai, Chunyu Li, Junda Yan, Tiancheng Zhang, H. Bao
{"title":"用于 5G/6G 应用、工作在 Ka 波段的低功耗、高增益和优异噪声系数硅基氮化镓低噪声放大器单片微波集成电路 (MMIC)","authors":"Zhou-Qiao Dai, Chunyu Li, Junda Yan, Tiancheng Zhang, H. Bao","doi":"10.13052/2023.aces.j.381010","DOIUrl":null,"url":null,"abstract":"A 25-40 GHz monolithic low-noise amplifier (LNA) is designed and fabricated with the 100 nm gallium nitride on silicon carbide (GaN-on-SiC) technology. This four-stage-cascade monolithic LNA performs a low DC power consumption of 150 mW and noise figure of 1.6-2.2 dB. Moreover, the gain of 34-37 dB with the continuous wave of more than 2 W over 24 hours can be achieved covering the operating bandwidth. Hence, this state-of-art LNA possesses a great potential to be directly integrated with GaN power amplifiers and other microwave components to realize the high-integration, high-reliability, and high-power RF front-end.","PeriodicalId":250668,"journal":{"name":"The Applied Computational Electromagnetics Society Journal (ACES)","volume":"23 57","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Low-power, High-gain and Excellent Noise Figure GaN-on-SiC LNA Monolithic Microwave Integrated Circuit (MMIC) operating at Ka-band for 5G/6G Application\",\"authors\":\"Zhou-Qiao Dai, Chunyu Li, Junda Yan, Tiancheng Zhang, H. Bao\",\"doi\":\"10.13052/2023.aces.j.381010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A 25-40 GHz monolithic low-noise amplifier (LNA) is designed and fabricated with the 100 nm gallium nitride on silicon carbide (GaN-on-SiC) technology. This four-stage-cascade monolithic LNA performs a low DC power consumption of 150 mW and noise figure of 1.6-2.2 dB. Moreover, the gain of 34-37 dB with the continuous wave of more than 2 W over 24 hours can be achieved covering the operating bandwidth. Hence, this state-of-art LNA possesses a great potential to be directly integrated with GaN power amplifiers and other microwave components to realize the high-integration, high-reliability, and high-power RF front-end.\",\"PeriodicalId\":250668,\"journal\":{\"name\":\"The Applied Computational Electromagnetics Society Journal (ACES)\",\"volume\":\"23 57\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Applied Computational Electromagnetics Society Journal (ACES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/2023.aces.j.381010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Applied Computational Electromagnetics Society Journal (ACES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/2023.aces.j.381010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Low-power, High-gain and Excellent Noise Figure GaN-on-SiC LNA Monolithic Microwave Integrated Circuit (MMIC) operating at Ka-band for 5G/6G Application
A 25-40 GHz monolithic low-noise amplifier (LNA) is designed and fabricated with the 100 nm gallium nitride on silicon carbide (GaN-on-SiC) technology. This four-stage-cascade monolithic LNA performs a low DC power consumption of 150 mW and noise figure of 1.6-2.2 dB. Moreover, the gain of 34-37 dB with the continuous wave of more than 2 W over 24 hours can be achieved covering the operating bandwidth. Hence, this state-of-art LNA possesses a great potential to be directly integrated with GaN power amplifiers and other microwave components to realize the high-integration, high-reliability, and high-power RF front-end.