T. Vaikunta Pai, Manmohan Singh, Nazeer Shaik, C. Ashokkumar, D. Anuradha, Amit Gangopadhyay, Goda Srinivasa Rao, T.Sunilkumar Reddy, D. Nagaraju
{"title":"人工智能增强型印度一次能源需求预测:模糊自动回归分布式滞后模型","authors":"T. Vaikunta Pai, Manmohan Singh, Nazeer Shaik, C. Ashokkumar, D. Anuradha, Amit Gangopadhyay, Goda Srinivasa Rao, T.Sunilkumar Reddy, D. Nagaraju","doi":"10.3233/jifs-240729","DOIUrl":null,"url":null,"abstract":"As the demand for energy in India continues to surge, accurate forecasting becomes paramount for efficient resource allocation and sustainable development. This study proposes an innovative approach to forecasting Indian primary energy demand by integrating Artificial Intelligence (AI) techniques with Fuzzy Auto-regressive Distributed Lag (FADL) models. FADL models, incorporating fuzzy logic, allow for a nuanced representation of uncertainties and complexities within the energy demand dynamics. In this research, historical energy consumption data is analysed using FADL models with both symmetric and non-symmetric triangular coefficients, enhancing the model’s adaptability to the inherent uncertainties associated with energy forecasting. This study addresses the urgent need for enhanced energy planning models in the context of sustainable development. Our research aims to provide a comprehensive framework for predicting future Total Final Consumption (TFC) in alignment with the Indian National Energy Plan’s net-zero emissions target by 2035. Recognizing the limitations of current models, our research introduces a novel approach that integrates advanced algorithms and methodologies, offering a more flexible and realistic assessment of TFC trends. The primary objective of this study is to develop an improved energy planning model that surpasses existing projections by incorporating sophisticated algorithms. We aim to refine","PeriodicalId":509313,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-enhanced forecasting of Indian primary energy demand: Fuzzy auto-regressive distributed lag models\",\"authors\":\"T. Vaikunta Pai, Manmohan Singh, Nazeer Shaik, C. Ashokkumar, D. Anuradha, Amit Gangopadhyay, Goda Srinivasa Rao, T.Sunilkumar Reddy, D. Nagaraju\",\"doi\":\"10.3233/jifs-240729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the demand for energy in India continues to surge, accurate forecasting becomes paramount for efficient resource allocation and sustainable development. This study proposes an innovative approach to forecasting Indian primary energy demand by integrating Artificial Intelligence (AI) techniques with Fuzzy Auto-regressive Distributed Lag (FADL) models. FADL models, incorporating fuzzy logic, allow for a nuanced representation of uncertainties and complexities within the energy demand dynamics. In this research, historical energy consumption data is analysed using FADL models with both symmetric and non-symmetric triangular coefficients, enhancing the model’s adaptability to the inherent uncertainties associated with energy forecasting. This study addresses the urgent need for enhanced energy planning models in the context of sustainable development. Our research aims to provide a comprehensive framework for predicting future Total Final Consumption (TFC) in alignment with the Indian National Energy Plan’s net-zero emissions target by 2035. Recognizing the limitations of current models, our research introduces a novel approach that integrates advanced algorithms and methodologies, offering a more flexible and realistic assessment of TFC trends. The primary objective of this study is to develop an improved energy planning model that surpasses existing projections by incorporating sophisticated algorithms. We aim to refine\",\"PeriodicalId\":509313,\"journal\":{\"name\":\"Journal of Intelligent & Fuzzy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent & Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jifs-240729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jifs-240729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
AI-enhanced forecasting of Indian primary energy demand: Fuzzy auto-regressive distributed lag models
As the demand for energy in India continues to surge, accurate forecasting becomes paramount for efficient resource allocation and sustainable development. This study proposes an innovative approach to forecasting Indian primary energy demand by integrating Artificial Intelligence (AI) techniques with Fuzzy Auto-regressive Distributed Lag (FADL) models. FADL models, incorporating fuzzy logic, allow for a nuanced representation of uncertainties and complexities within the energy demand dynamics. In this research, historical energy consumption data is analysed using FADL models with both symmetric and non-symmetric triangular coefficients, enhancing the model’s adaptability to the inherent uncertainties associated with energy forecasting. This study addresses the urgent need for enhanced energy planning models in the context of sustainable development. Our research aims to provide a comprehensive framework for predicting future Total Final Consumption (TFC) in alignment with the Indian National Energy Plan’s net-zero emissions target by 2035. Recognizing the limitations of current models, our research introduces a novel approach that integrates advanced algorithms and methodologies, offering a more flexible and realistic assessment of TFC trends. The primary objective of this study is to develop an improved energy planning model that surpasses existing projections by incorporating sophisticated algorithms. We aim to refine