{"title":"使用 FDDM/VF 预测穿孔导电外壳中 HPEM 波形与功率放大器的耦合情况","authors":"Ali Kalantarnia, Abdollah Mirzabeigi","doi":"10.1049/smt2.12189","DOIUrl":null,"url":null,"abstract":"<p>One of the most common methods to protect electronic and telecommunication systems in a high-power electromagnetic (HPEM) environment is using a conductive enclosure. Amplifiers are the vital parts in transmitter and receiver systems as the main components of a telecommunication system, so investigating the effects of HPEM waveform on their performance is very important. The Presence of apertures in the body of the conductive enclosure, as well as non-linear elements such as transistors in amplifiers, adds to the complexity of examining the coupling of electromagnetic fields on the performance of amplifiers. Considering the importance of the topic, in this study, the impact of the HPEM waveform on the power amplifier inside the conductive enclosure has been investigated. By using the finite difference delay modelling (FDDM) numerical method as a stable method followed by the vector fitting (VF) method, the electromagnetic problem has become a circuit problem, which allows examining the response of the power amplifier and any circuit, including non-linear elements against the interference field. Responses of bipolar linear and non-linear components in the perforated conductive enclosure by the proposed method have been compared with the results obtained by computer simulation technology microwave studio (CST-MWS) for verification.</p>","PeriodicalId":54999,"journal":{"name":"Iet Science Measurement & Technology","volume":"18 8","pages":"429-442"},"PeriodicalIF":1.4000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/smt2.12189","citationCount":"0","resultStr":"{\"title\":\"Predicting the coupling of HPEM waveform with a power amplifier in perforated conductive enclosure using FDDM/VF\",\"authors\":\"Ali Kalantarnia, Abdollah Mirzabeigi\",\"doi\":\"10.1049/smt2.12189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>One of the most common methods to protect electronic and telecommunication systems in a high-power electromagnetic (HPEM) environment is using a conductive enclosure. Amplifiers are the vital parts in transmitter and receiver systems as the main components of a telecommunication system, so investigating the effects of HPEM waveform on their performance is very important. The Presence of apertures in the body of the conductive enclosure, as well as non-linear elements such as transistors in amplifiers, adds to the complexity of examining the coupling of electromagnetic fields on the performance of amplifiers. Considering the importance of the topic, in this study, the impact of the HPEM waveform on the power amplifier inside the conductive enclosure has been investigated. By using the finite difference delay modelling (FDDM) numerical method as a stable method followed by the vector fitting (VF) method, the electromagnetic problem has become a circuit problem, which allows examining the response of the power amplifier and any circuit, including non-linear elements against the interference field. Responses of bipolar linear and non-linear components in the perforated conductive enclosure by the proposed method have been compared with the results obtained by computer simulation technology microwave studio (CST-MWS) for verification.</p>\",\"PeriodicalId\":54999,\"journal\":{\"name\":\"Iet Science Measurement & Technology\",\"volume\":\"18 8\",\"pages\":\"429-442\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/smt2.12189\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Science Measurement & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/smt2.12189\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Science Measurement & Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/smt2.12189","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Predicting the coupling of HPEM waveform with a power amplifier in perforated conductive enclosure using FDDM/VF
One of the most common methods to protect electronic and telecommunication systems in a high-power electromagnetic (HPEM) environment is using a conductive enclosure. Amplifiers are the vital parts in transmitter and receiver systems as the main components of a telecommunication system, so investigating the effects of HPEM waveform on their performance is very important. The Presence of apertures in the body of the conductive enclosure, as well as non-linear elements such as transistors in amplifiers, adds to the complexity of examining the coupling of electromagnetic fields on the performance of amplifiers. Considering the importance of the topic, in this study, the impact of the HPEM waveform on the power amplifier inside the conductive enclosure has been investigated. By using the finite difference delay modelling (FDDM) numerical method as a stable method followed by the vector fitting (VF) method, the electromagnetic problem has become a circuit problem, which allows examining the response of the power amplifier and any circuit, including non-linear elements against the interference field. Responses of bipolar linear and non-linear components in the perforated conductive enclosure by the proposed method have been compared with the results obtained by computer simulation technology microwave studio (CST-MWS) for verification.
期刊介绍:
IET Science, Measurement & Technology publishes papers in science, engineering and technology underpinning electronic and electrical engineering, nanotechnology and medical instrumentation.The emphasis of the journal is on theory, simulation methodologies and measurement techniques.
The major themes of the journal are:
- electromagnetism including electromagnetic theory, computational electromagnetics and EMC
- properties and applications of dielectric, magnetic, magneto-optic, piezoelectric materials down to the nanometre scale
- measurement and instrumentation including sensors, actuators, medical instrumentation, fundamentals of measurement including measurement standards, uncertainty, dissemination and calibration
Applications are welcome for illustrative purposes but the novelty and originality should focus on the proposed new methods.