桉树叶在酸性介质中对碳钢的缓蚀作用:综述

A. Ndukwe
{"title":"桉树叶在酸性介质中对碳钢的缓蚀作用:综述","authors":"A. Ndukwe","doi":"10.62638/zasmat1034","DOIUrl":null,"url":null,"abstract":"This paper concerns the overview of previous studies on the corrosion and inhibition of carbon steel that is allowed to degrade in a corrosive medium by the extract of the eucalyptus plant, with an emphasis on the extract's adsorption behaviour. Many researchers have largely employed eucalyptus plant bark, oil, and leaf extracts to prevent the corrosion of mild steel in acidic environments under various temperature settings. According to the results, when the bark extract of the eucalyptus plant was added to HCl (5%) at a concentration of 900 ppm, the inhibitor's maximum efficiency was 98.2 %. The leaf extract, on the other hand, had the maximum inhibitory efficacy of 93.09 % at 600 mg/L extract concentration in the H2SO4 (0.5 M) medium. The extracts' potency was shown to diminish with increasing temperature. The mechanism for eucalyptus extract's protection of carbon steel from corrosion in diverse corrosive situations was largely associated with the adsorption of the extract's inhibitive components on the steel's surface to reduce the interaction between the metal and the corrosive surroundings. The majority of the reported inhibitive behaviour of the eucalyptus extract was consistent with the Langmuir adsorption isotherm model.","PeriodicalId":23842,"journal":{"name":"Zastita materijala","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corrosion inhibition of carbon steel by eucalyptus leaves in acidic media: An overview\",\"authors\":\"A. Ndukwe\",\"doi\":\"10.62638/zasmat1034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper concerns the overview of previous studies on the corrosion and inhibition of carbon steel that is allowed to degrade in a corrosive medium by the extract of the eucalyptus plant, with an emphasis on the extract's adsorption behaviour. Many researchers have largely employed eucalyptus plant bark, oil, and leaf extracts to prevent the corrosion of mild steel in acidic environments under various temperature settings. According to the results, when the bark extract of the eucalyptus plant was added to HCl (5%) at a concentration of 900 ppm, the inhibitor's maximum efficiency was 98.2 %. The leaf extract, on the other hand, had the maximum inhibitory efficacy of 93.09 % at 600 mg/L extract concentration in the H2SO4 (0.5 M) medium. The extracts' potency was shown to diminish with increasing temperature. The mechanism for eucalyptus extract's protection of carbon steel from corrosion in diverse corrosive situations was largely associated with the adsorption of the extract's inhibitive components on the steel's surface to reduce the interaction between the metal and the corrosive surroundings. The majority of the reported inhibitive behaviour of the eucalyptus extract was consistent with the Langmuir adsorption isotherm model.\",\"PeriodicalId\":23842,\"journal\":{\"name\":\"Zastita materijala\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zastita materijala\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.62638/zasmat1034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zastita materijala","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.62638/zasmat1034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文概述了以往关于桉树植物萃取物在腐蚀性介质中对碳钢的腐蚀和抑制作用的研究,重点是萃取物的吸附行为。许多研究人员大多采用桉树树皮、油和叶提取物来防止低碳钢在不同温度设置下的酸性环境中腐蚀。研究结果表明,当桉树树皮提取物加入浓度为 900 ppm 的 5%盐酸中时,抑制剂的最高效率为 98.2%。另一方面,叶提取物在 H2SO4(0.5 M)培养基中的最大抑制效率为 93.09%,提取物浓度为 600 mg/L。提取物的效力随着温度的升高而减弱。桉树提取物在各种腐蚀情况下保护碳钢免受腐蚀的机理主要与提取物的抑制成分吸附在钢表面以减少金属与腐蚀环境之间的相互作用有关。据报道,桉树提取物的大多数抑制行为都符合朗缪尔吸附等温线模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Corrosion inhibition of carbon steel by eucalyptus leaves in acidic media: An overview
This paper concerns the overview of previous studies on the corrosion and inhibition of carbon steel that is allowed to degrade in a corrosive medium by the extract of the eucalyptus plant, with an emphasis on the extract's adsorption behaviour. Many researchers have largely employed eucalyptus plant bark, oil, and leaf extracts to prevent the corrosion of mild steel in acidic environments under various temperature settings. According to the results, when the bark extract of the eucalyptus plant was added to HCl (5%) at a concentration of 900 ppm, the inhibitor's maximum efficiency was 98.2 %. The leaf extract, on the other hand, had the maximum inhibitory efficacy of 93.09 % at 600 mg/L extract concentration in the H2SO4 (0.5 M) medium. The extracts' potency was shown to diminish with increasing temperature. The mechanism for eucalyptus extract's protection of carbon steel from corrosion in diverse corrosive situations was largely associated with the adsorption of the extract's inhibitive components on the steel's surface to reduce the interaction between the metal and the corrosive surroundings. The majority of the reported inhibitive behaviour of the eucalyptus extract was consistent with the Langmuir adsorption isotherm model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Zastita materijala
Zastita materijala Materials Science-General Materials Science
CiteScore
0.80
自引率
0.00%
发文量
26
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信