利用改进的无装配有限元对电热耦合问题进行 GPU 并行计算的策略

IF 4.8 2区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Shaowen Wu, Youyuan Wang, Jinhong Hou, Ruixiao Meng
{"title":"利用改进的无装配有限元对电热耦合问题进行 GPU 并行计算的策略","authors":"Shaowen Wu, Youyuan Wang, Jinhong Hou, Ruixiao Meng","doi":"10.1093/jcde/qwae024","DOIUrl":null,"url":null,"abstract":"\n The analysis of electrothermal coupling problems finds extensive application in engineering. However, for large-scale electrothermal coupling problems, the time cost and storage requirements for solving them using the Finite Element Method (FEM) are substantial. We optimise the finite element electrothermal coupling computation from two aspects: computational speed and storage usage. Based on the assembly-free FEM, we explore the symmetry of element matrices to reduce storage for second-order tetrahedral elements and propose a GPU parallel algorithm to improve computational speed. At the same time, we allocate the parallel parts of an electrothermal coupling problem to two GPUs to improve the speed further. In addition, for the three types of boundary conditions in electrothermal coupling problems, we design parallel application methods suitable for assembly-free FEM. Finally, we compare our strategy with methods from other literature through the numerical experiment. Our method reduces the element matrices’ storage by 45%. Compared with the solution process using the element level method and degree of freedom(DoF) level method, our strategy achieves average acceleration ratios of 5.83 and 1.38, respectively.","PeriodicalId":48611,"journal":{"name":"Journal of Computational Design and Engineering","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GPU parallel computation strategy for electrothermal coupling problems using improved assembly-free FEM\",\"authors\":\"Shaowen Wu, Youyuan Wang, Jinhong Hou, Ruixiao Meng\",\"doi\":\"10.1093/jcde/qwae024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The analysis of electrothermal coupling problems finds extensive application in engineering. However, for large-scale electrothermal coupling problems, the time cost and storage requirements for solving them using the Finite Element Method (FEM) are substantial. We optimise the finite element electrothermal coupling computation from two aspects: computational speed and storage usage. Based on the assembly-free FEM, we explore the symmetry of element matrices to reduce storage for second-order tetrahedral elements and propose a GPU parallel algorithm to improve computational speed. At the same time, we allocate the parallel parts of an electrothermal coupling problem to two GPUs to improve the speed further. In addition, for the three types of boundary conditions in electrothermal coupling problems, we design parallel application methods suitable for assembly-free FEM. Finally, we compare our strategy with methods from other literature through the numerical experiment. Our method reduces the element matrices’ storage by 45%. Compared with the solution process using the element level method and degree of freedom(DoF) level method, our strategy achieves average acceleration ratios of 5.83 and 1.38, respectively.\",\"PeriodicalId\":48611,\"journal\":{\"name\":\"Journal of Computational Design and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Design and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jcde/qwae024\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Design and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jcde/qwae024","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

电热耦合问题的分析在工程领域应用广泛。然而,对于大规模的电热耦合问题,使用有限元法(FEM)求解需要大量的时间成本和存储空间。我们从计算速度和存储使用两个方面优化了有限元电热耦合计算。在无装配有限元法的基础上,我们探索了元素矩阵的对称性以减少二阶四面体元素的存储量,并提出了一种 GPU 并行算法以提高计算速度。同时,我们将一个电热耦合问题的并行部分分配给两个 GPU,以进一步提高速度。此外,针对电热耦合问题中的三种边界条件,我们设计了适合无装配有限元的并行应用方法。最后,我们通过数值实验将我们的策略与其他文献中的方法进行了比较。我们的方法减少了 45% 的元素矩阵存储量。与使用元素级方法和自由度(DoF)级方法的求解过程相比,我们的策略分别实现了 5.83 和 1.38 的平均加速比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GPU parallel computation strategy for electrothermal coupling problems using improved assembly-free FEM
The analysis of electrothermal coupling problems finds extensive application in engineering. However, for large-scale electrothermal coupling problems, the time cost and storage requirements for solving them using the Finite Element Method (FEM) are substantial. We optimise the finite element electrothermal coupling computation from two aspects: computational speed and storage usage. Based on the assembly-free FEM, we explore the symmetry of element matrices to reduce storage for second-order tetrahedral elements and propose a GPU parallel algorithm to improve computational speed. At the same time, we allocate the parallel parts of an electrothermal coupling problem to two GPUs to improve the speed further. In addition, for the three types of boundary conditions in electrothermal coupling problems, we design parallel application methods suitable for assembly-free FEM. Finally, we compare our strategy with methods from other literature through the numerical experiment. Our method reduces the element matrices’ storage by 45%. Compared with the solution process using the element level method and degree of freedom(DoF) level method, our strategy achieves average acceleration ratios of 5.83 and 1.38, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Design and Engineering
Journal of Computational Design and Engineering Computer Science-Human-Computer Interaction
CiteScore
7.70
自引率
20.40%
发文量
125
期刊介绍: Journal of Computational Design and Engineering is an international journal that aims to provide academia and industry with a venue for rapid publication of research papers reporting innovative computational methods and applications to achieve a major breakthrough, practical improvements, and bold new research directions within a wide range of design and engineering: • Theory and its progress in computational advancement for design and engineering • Development of computational framework to support large scale design and engineering • Interaction issues among human, designed artifacts, and systems • Knowledge-intensive technologies for intelligent and sustainable systems • Emerging technology and convergence of technology fields presented with convincing design examples • Educational issues for academia, practitioners, and future generation • Proposal on new research directions as well as survey and retrospectives on mature field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信