{"title":"用于自动驾驶汽车多模式目标检测的可学习融合机制","authors":"Yahya Massoud, Robert Laganiere","doi":"10.1049/cvi2.12259","DOIUrl":null,"url":null,"abstract":"<p>Perception systems in autonomous vehicles need to accurately detect and classify objects within their surrounding environments. Numerous types of sensors are deployed on these vehicles, and the combination of such multimodal data streams can significantly boost performance. The authors introduce a novel sensor fusion framework using deep convolutional neural networks. The framework employs both camera and LiDAR sensors in a multimodal, multiview configuration. The authors leverage both data types by introducing two new innovative fusion mechanisms: element-wise multiplication and multimodal factorised bilinear pooling. The methods improve the bird's eye view moderate average precision score by +4.97% and +8.35% on the KITTI dataset when compared to traditional fusion operators like element-wise addition and feature map concatenation. An in-depth analysis of key design choices impacting performance, such as data augmentation, multi-task learning, and convolutional architecture design is offered. The study aims to pave the way for the development of more robust multimodal machine vision systems. The authors conclude the paper with qualitative results, discussing both successful and problematic cases, along with potential ways to mitigate the latter.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 4","pages":"499-511"},"PeriodicalIF":1.5000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12259","citationCount":"0","resultStr":"{\"title\":\"Learnable fusion mechanisms for multimodal object detection in autonomous vehicles\",\"authors\":\"Yahya Massoud, Robert Laganiere\",\"doi\":\"10.1049/cvi2.12259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Perception systems in autonomous vehicles need to accurately detect and classify objects within their surrounding environments. Numerous types of sensors are deployed on these vehicles, and the combination of such multimodal data streams can significantly boost performance. The authors introduce a novel sensor fusion framework using deep convolutional neural networks. The framework employs both camera and LiDAR sensors in a multimodal, multiview configuration. The authors leverage both data types by introducing two new innovative fusion mechanisms: element-wise multiplication and multimodal factorised bilinear pooling. The methods improve the bird's eye view moderate average precision score by +4.97% and +8.35% on the KITTI dataset when compared to traditional fusion operators like element-wise addition and feature map concatenation. An in-depth analysis of key design choices impacting performance, such as data augmentation, multi-task learning, and convolutional architecture design is offered. The study aims to pave the way for the development of more robust multimodal machine vision systems. The authors conclude the paper with qualitative results, discussing both successful and problematic cases, along with potential ways to mitigate the latter.</p>\",\"PeriodicalId\":56304,\"journal\":{\"name\":\"IET Computer Vision\",\"volume\":\"18 4\",\"pages\":\"499-511\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12259\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12259\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12259","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Learnable fusion mechanisms for multimodal object detection in autonomous vehicles
Perception systems in autonomous vehicles need to accurately detect and classify objects within their surrounding environments. Numerous types of sensors are deployed on these vehicles, and the combination of such multimodal data streams can significantly boost performance. The authors introduce a novel sensor fusion framework using deep convolutional neural networks. The framework employs both camera and LiDAR sensors in a multimodal, multiview configuration. The authors leverage both data types by introducing two new innovative fusion mechanisms: element-wise multiplication and multimodal factorised bilinear pooling. The methods improve the bird's eye view moderate average precision score by +4.97% and +8.35% on the KITTI dataset when compared to traditional fusion operators like element-wise addition and feature map concatenation. An in-depth analysis of key design choices impacting performance, such as data augmentation, multi-task learning, and convolutional architecture design is offered. The study aims to pave the way for the development of more robust multimodal machine vision systems. The authors conclude the paper with qualitative results, discussing both successful and problematic cases, along with potential ways to mitigate the latter.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf