利用机器学习技术预测糖尿病

Hau-Lee Tong, Hu Ng, Harannesh Arul Ananthan
{"title":"利用机器学习技术预测糖尿病","authors":"Hau-Lee Tong, Hu Ng, Harannesh Arul Ananthan","doi":"10.33093/jetap.2024.6.1.12","DOIUrl":null,"url":null,"abstract":"This study addresses the challenge of accurately identifying diabetes mellitus in individuals. Utilizing accessible online and real-world diagnostic data, we employ machine learning models, including Support Vector Machine, Random Forest, Naïve Bayes, eXtreme Gradient Boosting, and Deep Neural Network, on the PIMA Indian Diabetes and NHANES 1999-2016 datasets. Rigorous data pre-processing steps were conducted, handling null values, outliers, and imbalanced data together with data normalization. Our results reveal that the RF model achieves a 79% accuracy for binary classification on the PIMA Indian Diabetes dataset, using a 60:40 train-test split with BORUTA selected features. Meanwhile, the XGBoost model excels on the NHANES 1999-2016 dataset, achieving 92% accuracy for binary and 91% for multiclass classification respectively.","PeriodicalId":441201,"journal":{"name":"Journal of Engineering Technology and Applied Physics","volume":"120 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Diabetes Mellitus with Machine Learning Techniques\",\"authors\":\"Hau-Lee Tong, Hu Ng, Harannesh Arul Ananthan\",\"doi\":\"10.33093/jetap.2024.6.1.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study addresses the challenge of accurately identifying diabetes mellitus in individuals. Utilizing accessible online and real-world diagnostic data, we employ machine learning models, including Support Vector Machine, Random Forest, Naïve Bayes, eXtreme Gradient Boosting, and Deep Neural Network, on the PIMA Indian Diabetes and NHANES 1999-2016 datasets. Rigorous data pre-processing steps were conducted, handling null values, outliers, and imbalanced data together with data normalization. Our results reveal that the RF model achieves a 79% accuracy for binary classification on the PIMA Indian Diabetes dataset, using a 60:40 train-test split with BORUTA selected features. Meanwhile, the XGBoost model excels on the NHANES 1999-2016 dataset, achieving 92% accuracy for binary and 91% for multiclass classification respectively.\",\"PeriodicalId\":441201,\"journal\":{\"name\":\"Journal of Engineering Technology and Applied Physics\",\"volume\":\"120 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Technology and Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33093/jetap.2024.6.1.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Technology and Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33093/jetap.2024.6.1.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究解决了准确识别糖尿病患者的难题。利用可访问的在线和真实世界诊断数据,我们在 PIMA 印度糖尿病数据集和 NHANES 1999-2016 数据集上采用了机器学习模型,包括支持向量机、随机森林、奈夫贝叶斯、eXtreme Gradient Boosting 和深度神经网络。我们进行了严格的数据预处理步骤,处理了空值、异常值和不平衡数据,并对数据进行了归一化处理。我们的结果表明,RF 模型在 PIMA 印度糖尿病数据集上的二元分类准确率达到了 79%,使用 BORUTA 精选特征的训练-测试比例为 60:40。同时,XGBoost 模型在 NHANES 1999-2016 数据集上表现出色,二元分类准确率达到 92%,多分类准确率达到 91%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Diabetes Mellitus with Machine Learning Techniques
This study addresses the challenge of accurately identifying diabetes mellitus in individuals. Utilizing accessible online and real-world diagnostic data, we employ machine learning models, including Support Vector Machine, Random Forest, Naïve Bayes, eXtreme Gradient Boosting, and Deep Neural Network, on the PIMA Indian Diabetes and NHANES 1999-2016 datasets. Rigorous data pre-processing steps were conducted, handling null values, outliers, and imbalanced data together with data normalization. Our results reveal that the RF model achieves a 79% accuracy for binary classification on the PIMA Indian Diabetes dataset, using a 60:40 train-test split with BORUTA selected features. Meanwhile, the XGBoost model excels on the NHANES 1999-2016 dataset, achieving 92% accuracy for binary and 91% for multiclass classification respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信