通过基于样条的加速压缩技术实现奇异扰动和大时延

Akhila Mariya Regal, Dinesh Kumar S
{"title":"通过基于样条的加速压缩技术实现奇异扰动和大时延","authors":"Akhila Mariya Regal, Dinesh Kumar S","doi":"10.37256/cm.5120244269","DOIUrl":null,"url":null,"abstract":"In the quest to solve the singularly perturbed delay differential equations (SPDDEs) involving large delay with integral boundary condition, the cubic spline in compression technique is explored for the study of dynamical systems to capture complex temporal phenomena in a wide range of scientific disciplines. The integral boundary condition is handled using Simpson's 1/3 rule and the scheme's applicability is validated by numerically experimenting with some problems at different values of mesh size and perturbation parameter. Numerical data are tabulated to show that the suggested approach is more accurate and is an improvement over the methods used in the literature. The insights gained from this research paper provide a foundation for further exploration and utilization of SPDDEs in understanding and predicting the behavior of complex systems across diverse scientific domains.","PeriodicalId":504505,"journal":{"name":"Contemporary Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Singular Perturbations and Large Time Delays Through Accelerated Spline-Based Compression Technique\",\"authors\":\"Akhila Mariya Regal, Dinesh Kumar S\",\"doi\":\"10.37256/cm.5120244269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the quest to solve the singularly perturbed delay differential equations (SPDDEs) involving large delay with integral boundary condition, the cubic spline in compression technique is explored for the study of dynamical systems to capture complex temporal phenomena in a wide range of scientific disciplines. The integral boundary condition is handled using Simpson's 1/3 rule and the scheme's applicability is validated by numerically experimenting with some problems at different values of mesh size and perturbation parameter. Numerical data are tabulated to show that the suggested approach is more accurate and is an improvement over the methods used in the literature. The insights gained from this research paper provide a foundation for further exploration and utilization of SPDDEs in understanding and predicting the behavior of complex systems across diverse scientific domains.\",\"PeriodicalId\":504505,\"journal\":{\"name\":\"Contemporary Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contemporary Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37256/cm.5120244269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37256/cm.5120244269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了求解带有积分边界条件、涉及大延迟的奇异扰动延迟微分方程(SPDDEs),研究人员探索了压缩立方样条技术,用于研究动力学系统,以捕捉各种科学学科中的复杂时间现象。利用辛普森 1/3 规则处理积分边界条件,并通过对不同网格尺寸和扰动参数值下的一些问题进行数值实验,验证了该方案的适用性。数值数据以表格形式显示,所建议的方法更加精确,与文献中使用的方法相比有所改进。从本研究论文中获得的见解为进一步探索和利用 SPDDEs 理解和预测不同科学领域复杂系统的行为奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Singular Perturbations and Large Time Delays Through Accelerated Spline-Based Compression Technique
In the quest to solve the singularly perturbed delay differential equations (SPDDEs) involving large delay with integral boundary condition, the cubic spline in compression technique is explored for the study of dynamical systems to capture complex temporal phenomena in a wide range of scientific disciplines. The integral boundary condition is handled using Simpson's 1/3 rule and the scheme's applicability is validated by numerically experimenting with some problems at different values of mesh size and perturbation parameter. Numerical data are tabulated to show that the suggested approach is more accurate and is an improvement over the methods used in the literature. The insights gained from this research paper provide a foundation for further exploration and utilization of SPDDEs in understanding and predicting the behavior of complex systems across diverse scientific domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信