{"title":"利用智能手机拍摄的视频和模板匹配算法快速估算电缆结构的受力情况","authors":"Xiao-Wei Ye, Wei-Ming Que, Yang Ding, Tao Jin","doi":"10.1155/2024/5512085","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Cables are important components of long-span bridge structures, whose operation is significantly affected by cable force changes. Nowadays, cable force testing is performed by physical methods; that is, sensors are installed on the cable structure to monitor its force changes. Obviously, this strategy requires an extensive amount of time to achieve cable force calculation, which makes it impossible to monitor the force of the cable structure in real time. Meanwhile, smartphones have attracted extensive attention in the field of structural health monitoring (SHM) because of their higher cost-effectiveness than accelerometers, which include price and lifespan. Besides, many people own a smartphone, which leads to the possibility of a wider range of applications. Therefore, this paper presents a framework for the rapid estimation of the cable force of long-span bridges based on smartphones-captured video and a template matching algorithm. First, the empirical mode decomposition (EMD) method with wavelet decomposition (WD) method, that is, the EMDWD model, is constructed to extract the vibration signal of the bridge cable by eliminating the effects of smartphone vibration and environmental noise on the measured dynamic displacement, thus effectively improving the accuracy of data processing. In addition, the vibration identification model of bridge cable based on a template matching algorithm is established, and the deformation curve of cable is obtained. Finally, the frequency of bridge suspender is calculated by the Fourier transform method (FFT), and the cable force is estimated based on the smartphone-captured video.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2024 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5512085","citationCount":"0","resultStr":"{\"title\":\"Fast Force Estimation of Cable Structures Using Smartphone-Captured Video and Template Matching Algorithm\",\"authors\":\"Xiao-Wei Ye, Wei-Ming Que, Yang Ding, Tao Jin\",\"doi\":\"10.1155/2024/5512085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Cables are important components of long-span bridge structures, whose operation is significantly affected by cable force changes. Nowadays, cable force testing is performed by physical methods; that is, sensors are installed on the cable structure to monitor its force changes. Obviously, this strategy requires an extensive amount of time to achieve cable force calculation, which makes it impossible to monitor the force of the cable structure in real time. Meanwhile, smartphones have attracted extensive attention in the field of structural health monitoring (SHM) because of their higher cost-effectiveness than accelerometers, which include price and lifespan. Besides, many people own a smartphone, which leads to the possibility of a wider range of applications. Therefore, this paper presents a framework for the rapid estimation of the cable force of long-span bridges based on smartphones-captured video and a template matching algorithm. First, the empirical mode decomposition (EMD) method with wavelet decomposition (WD) method, that is, the EMDWD model, is constructed to extract the vibration signal of the bridge cable by eliminating the effects of smartphone vibration and environmental noise on the measured dynamic displacement, thus effectively improving the accuracy of data processing. In addition, the vibration identification model of bridge cable based on a template matching algorithm is established, and the deformation curve of cable is obtained. Finally, the frequency of bridge suspender is calculated by the Fourier transform method (FFT), and the cable force is estimated based on the smartphone-captured video.</p>\\n </div>\",\"PeriodicalId\":49471,\"journal\":{\"name\":\"Structural Control & Health Monitoring\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5512085\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Control & Health Monitoring\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/5512085\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/5512085","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Fast Force Estimation of Cable Structures Using Smartphone-Captured Video and Template Matching Algorithm
Cables are important components of long-span bridge structures, whose operation is significantly affected by cable force changes. Nowadays, cable force testing is performed by physical methods; that is, sensors are installed on the cable structure to monitor its force changes. Obviously, this strategy requires an extensive amount of time to achieve cable force calculation, which makes it impossible to monitor the force of the cable structure in real time. Meanwhile, smartphones have attracted extensive attention in the field of structural health monitoring (SHM) because of their higher cost-effectiveness than accelerometers, which include price and lifespan. Besides, many people own a smartphone, which leads to the possibility of a wider range of applications. Therefore, this paper presents a framework for the rapid estimation of the cable force of long-span bridges based on smartphones-captured video and a template matching algorithm. First, the empirical mode decomposition (EMD) method with wavelet decomposition (WD) method, that is, the EMDWD model, is constructed to extract the vibration signal of the bridge cable by eliminating the effects of smartphone vibration and environmental noise on the measured dynamic displacement, thus effectively improving the accuracy of data processing. In addition, the vibration identification model of bridge cable based on a template matching algorithm is established, and the deformation curve of cable is obtained. Finally, the frequency of bridge suspender is calculated by the Fourier transform method (FFT), and the cable force is estimated based on the smartphone-captured video.
期刊介绍:
The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications.
Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics.
Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.