智能城市中的道路事故严重性检测

Deeksha K, Kavya S, Nikita J, E. R. C, E. R. C
{"title":"智能城市中的道路事故严重性检测","authors":"Deeksha K, Kavya S, Nikita J, E. R. C, E. R. C","doi":"10.32628/cseit241024","DOIUrl":null,"url":null,"abstract":"Ensuring safety, in cities is a focus in the development of urban areas requiring new and creative methods for categorizing and managing accidents. Traditional approaches often face challenges in evaluating accident seriousness within changing city environments. This research utilizes Long Short Term Memory (LSTM) and Convolutional Neural Network (CNN) techniques to create a system that categorizes accidents into three severity levels; minor, moderate and severe. By leveraging learning capabilities, our method boosts the precision and efficiency of safety protocols in cities. The outcomes exhibit promising results in categorizing accident severity offering a tool for enhancing urban safety infrastructure. Through empowering cities to handle accidents, our model establishes a foundation for safety initiatives. In essence, this study contributes to enhancing safety standards in cities promoting resilience and sustainability, within settings.","PeriodicalId":313456,"journal":{"name":"International Journal of Scientific Research in Computer Science, Engineering and Information Technology","volume":"122 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Road Accident Severity Detection In Smart Cities\",\"authors\":\"Deeksha K, Kavya S, Nikita J, E. R. C, E. R. C\",\"doi\":\"10.32628/cseit241024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ensuring safety, in cities is a focus in the development of urban areas requiring new and creative methods for categorizing and managing accidents. Traditional approaches often face challenges in evaluating accident seriousness within changing city environments. This research utilizes Long Short Term Memory (LSTM) and Convolutional Neural Network (CNN) techniques to create a system that categorizes accidents into three severity levels; minor, moderate and severe. By leveraging learning capabilities, our method boosts the precision and efficiency of safety protocols in cities. The outcomes exhibit promising results in categorizing accident severity offering a tool for enhancing urban safety infrastructure. Through empowering cities to handle accidents, our model establishes a foundation for safety initiatives. In essence, this study contributes to enhancing safety standards in cities promoting resilience and sustainability, within settings.\",\"PeriodicalId\":313456,\"journal\":{\"name\":\"International Journal of Scientific Research in Computer Science, Engineering and Information Technology\",\"volume\":\"122 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Scientific Research in Computer Science, Engineering and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32628/cseit241024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Scientific Research in Computer Science, Engineering and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32628/cseit241024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

确保城市安全是城市地区发展的重点,需要采用新的和创造性的方法对事故进行分类和管理。在不断变化的城市环境中,传统方法在评估事故严重性方面往往面临挑战。本研究利用长短期记忆(LSTM)和卷积神经网络(CNN)技术创建了一个系统,可将事故分为轻微、中等和严重三个严重等级。通过利用学习能力,我们的方法提高了城市安全协议的精确度和效率。研究结果表明,在对事故严重程度进行分类方面取得了可喜的成果,为加强城市安全基础设施提供了工具。通过增强城市处理事故的能力,我们的模型为安全倡议奠定了基础。从本质上讲,这项研究有助于提高城市的安全标准,促进城市的恢复能力和可持续发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Road Accident Severity Detection In Smart Cities
Ensuring safety, in cities is a focus in the development of urban areas requiring new and creative methods for categorizing and managing accidents. Traditional approaches often face challenges in evaluating accident seriousness within changing city environments. This research utilizes Long Short Term Memory (LSTM) and Convolutional Neural Network (CNN) techniques to create a system that categorizes accidents into three severity levels; minor, moderate and severe. By leveraging learning capabilities, our method boosts the precision and efficiency of safety protocols in cities. The outcomes exhibit promising results in categorizing accident severity offering a tool for enhancing urban safety infrastructure. Through empowering cities to handle accidents, our model establishes a foundation for safety initiatives. In essence, this study contributes to enhancing safety standards in cities promoting resilience and sustainability, within settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信