携带轨道角动量的狄拉克粒子发射率的量子极限

Particles Pub Date : 2024-03-17 DOI:10.3390/particles7010015
Alessandro Curcio, A. Cianchi, Massimo Ferrario
{"title":"携带轨道角动量的狄拉克粒子发射率的量子极限","authors":"Alessandro Curcio, A. Cianchi, Massimo Ferrario","doi":"10.3390/particles7010015","DOIUrl":null,"url":null,"abstract":"In this article, we highlight that the interaction potential confining Dirac particles in a box must be invariant under the charge conjugation to avoid the Klein paradox, in which an infinite number of negative-energy particles are excited. Furthermore, we derive the quantization rules for a relativistic particle in a cylindrical box, which emulates the volume occupied by a beam of particles with a non-trivial aspect ratio. We apply our results to the evaluation of the quantum limit for emittance in particle accelerators. The developed theory allows the description of quantum beams carrying Orbital Angular Momentum (OAM). We demonstrate how the degeneracy pressure is such to increase the phase–space area of Dirac particles carrying OAM. The results dramatically differ from the classical evaluation of phase–space areas, that would foresee no increase in emittance for beams in a coherent state of OAM. We discuss the quantization of the phase–space cell’s area for single Dirac particles carrying OAM, and, finally, provide an interpretation of the beam entropy as the measure of how much the phase–space area occupied by the beam deviates from its quantum limit.","PeriodicalId":512239,"journal":{"name":"Particles","volume":"3 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Limit for the Emittance of Dirac Particles Carrying Orbital Angular Momentum\",\"authors\":\"Alessandro Curcio, A. Cianchi, Massimo Ferrario\",\"doi\":\"10.3390/particles7010015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we highlight that the interaction potential confining Dirac particles in a box must be invariant under the charge conjugation to avoid the Klein paradox, in which an infinite number of negative-energy particles are excited. Furthermore, we derive the quantization rules for a relativistic particle in a cylindrical box, which emulates the volume occupied by a beam of particles with a non-trivial aspect ratio. We apply our results to the evaluation of the quantum limit for emittance in particle accelerators. The developed theory allows the description of quantum beams carrying Orbital Angular Momentum (OAM). We demonstrate how the degeneracy pressure is such to increase the phase–space area of Dirac particles carrying OAM. The results dramatically differ from the classical evaluation of phase–space areas, that would foresee no increase in emittance for beams in a coherent state of OAM. We discuss the quantization of the phase–space cell’s area for single Dirac particles carrying OAM, and, finally, provide an interpretation of the beam entropy as the measure of how much the phase–space area occupied by the beam deviates from its quantum limit.\",\"PeriodicalId\":512239,\"journal\":{\"name\":\"Particles\",\"volume\":\"3 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Particles\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/particles7010015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/particles7010015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,我们着重强调了将狄拉克粒子限制在一个盒子中的相互作用势必须在电荷共轭作用下保持不变,以避免克莱因悖论,即无限数量的负能量粒子被激发。此外,我们还推导出了相对论粒子在圆柱形盒子中的量子化规则,该盒子模拟了具有非三维长宽比的粒子束所占据的体积。我们将结果应用于粒子加速器中发射量子极限的评估。所开发的理论可以描述携带轨道角动量(OAM)的量子束。我们证明了变性压力是如何增加携带 OAM 的狄拉克粒子的相空间面积的。结果与相空间面积的经典评估大相径庭,因为经典评估认为,OAM 相干态光束的发射率不会增加。我们讨论了携带 OAM 的单个狄拉克粒子相空间单元面积的量子化问题,最后对光束熵进行了解释,将其视为光束所占相空间面积偏离量子极限程度的度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum Limit for the Emittance of Dirac Particles Carrying Orbital Angular Momentum
In this article, we highlight that the interaction potential confining Dirac particles in a box must be invariant under the charge conjugation to avoid the Klein paradox, in which an infinite number of negative-energy particles are excited. Furthermore, we derive the quantization rules for a relativistic particle in a cylindrical box, which emulates the volume occupied by a beam of particles with a non-trivial aspect ratio. We apply our results to the evaluation of the quantum limit for emittance in particle accelerators. The developed theory allows the description of quantum beams carrying Orbital Angular Momentum (OAM). We demonstrate how the degeneracy pressure is such to increase the phase–space area of Dirac particles carrying OAM. The results dramatically differ from the classical evaluation of phase–space areas, that would foresee no increase in emittance for beams in a coherent state of OAM. We discuss the quantization of the phase–space cell’s area for single Dirac particles carrying OAM, and, finally, provide an interpretation of the beam entropy as the measure of how much the phase–space area occupied by the beam deviates from its quantum limit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信